

14.03/003 Micro Theory & Public Policy, Fall 2025

Lecture slides 4. Consumer preference and the theory of choice

David Autor (Prof), MIT Economics and NBER

Salome Aguilar Llanes (TA), Nagisa Tadjfar (TA), Emma Zhu (TA)

Announcements

— This Wednesday

- Read for in-class class discussion:

Bleemer, Zachary, and Aashish Mehta. "Will studying economics make you rich? A regression discontinuity analysis of the returns to college major." *American Economic Journal: Applied Economics* 14, no. 2 (2022): 1-22

- What's the question of the paper?
- What's the main methodology for answering that question?
- What are the key findings?
- What questions does this leave you with
- Apologies: No Autor office hours this Weds*

— Next Monday (9/22) — How much do low-income families value health insurance?

- Read for in-class discussion:

Finkelstein, Amy, Nathaniel Hendren, and Mark Shepard. "Subsidizing health insurance for low-income adults: Evidence from Massachusetts." *American Economic Review* 109, no. 4 (2019): 1530-1567

Utility Maximization and Consumer Choice

The axioms of consumer preference theory

The axioms of consumer preference theory were developed for three purposes:

1. Portray rational behavior
2. Mathematical representation of utility functions
3. Derive “well-behaved” demand curves

Utility functions: Cardinal and ordinal

A consumer's utility from consumption of a given bundle A is determined by a personal *utility function*.

Cardinal utility function

- $U(A)$ is a cardinal number: $U : \text{consumption bundle} \rightarrow \mathbb{R}$ measured in “utils”

Ordinal utility function

- U provides a “ranking” or “preference ordering” over bundles.

$$U:(A,B) \rightarrow \left\{ \begin{array}{l} A \stackrel{P}{\sim} B \\ B \stackrel{P}{\sim} A \\ A \stackrel{I}{\sim} B \end{array} \right.$$

Cardinal vs. ordinal utility functions

- Problems with **cardinal** utility functions
 1. Difficult to find the appropriate measurement index (metric)
 2. Invite us to make interpersonal comparisons of utility, which is problematic. Want to focus on *intrapersonal* choices
- Using unit-free **ordinal** utility functions avoids these problems
- Surprisingly, we can build a lot of theoretical structure using only ordinal properties of utility functions

Axiom 1: Completeness

Axiom 1: Preferences are complete (“completeness”)

- For any two bundles A and B, a consumer can establish a preference ordering.

1. $A^P B$

2. $B^P A$

3. $A^I B$

Axiom 2: Transitivity

Axiom 2: Preferences are transitive (“transitivity”)

- For any consumer if $A \text{ } P \text{ } B$ and $B \text{ } P \text{ } C$ then it must be that $A \text{ } P \text{ } C$.
- Consumers are consistent in their preferences

Axiom 3: Completeness, transitivity, and continuity

Axiom 3: Preferences are continuous (“continuity”)

- If $A \succ B$ and C lies within an ε radius of B then $A \succ C$.
- We need continuity to derive well-behaved demand curves.

Axioms: Completeness, transitivity, and continuity

- *Axiom 1: Preferences are complete (“completeness”)*
- *Axiom 2: Preferences are transitive (“transitivity”)*
- *Axiom 3: Preferences are continuous (“continuity”)*

Theorem

If Axioms 1–3 are obeyed, then we can define a cardinal utility function that represents the individual's preference.

(Note: this theorem should be interpreted as an “as if” statement. We do not believe that consumers literally have utility functions)

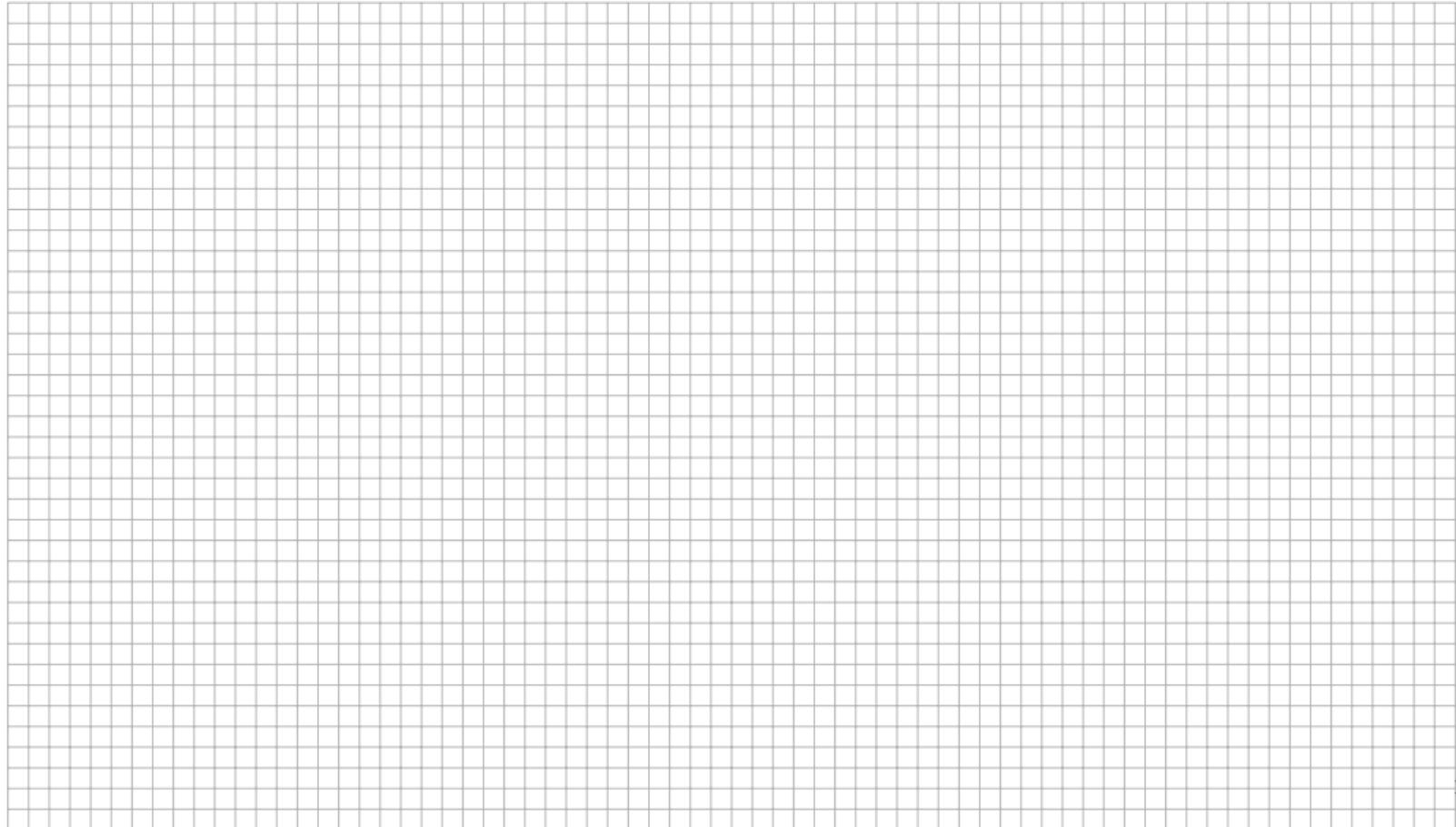
Indifference curves

- The indifference curve $IC(\bar{U})$ is the set of consumption bundles that generate utility level \bar{U} for a utility function U
- An *Indifference Curve Map* is a sequence of indifference curves defined over every utility level:

$$\{IC(0), IC(\varepsilon), IC(2\varepsilon), \dots\}$$

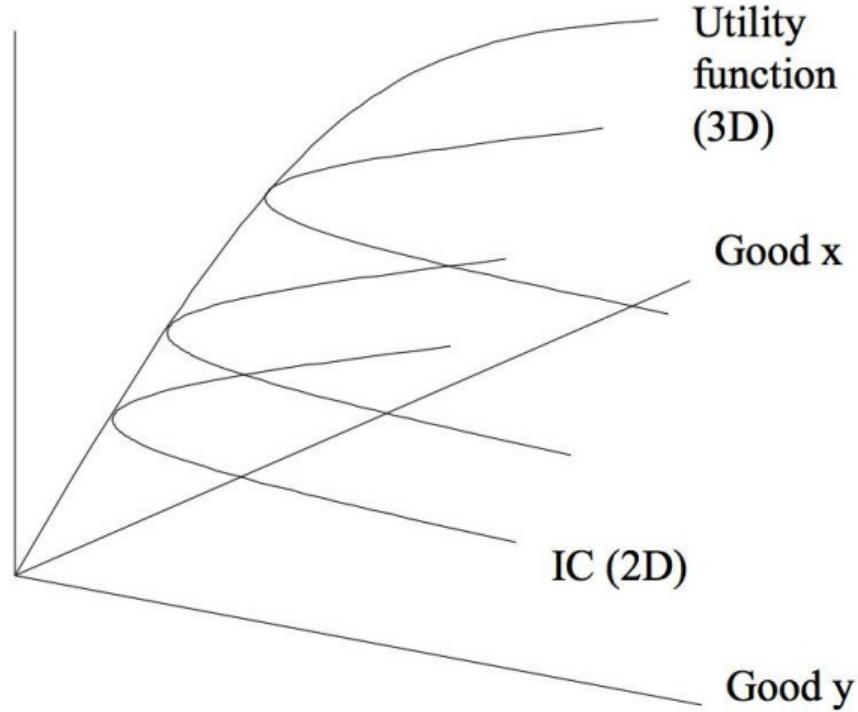
with a small positive value for ε

3D indifference curve map – Autor will attempt to draw

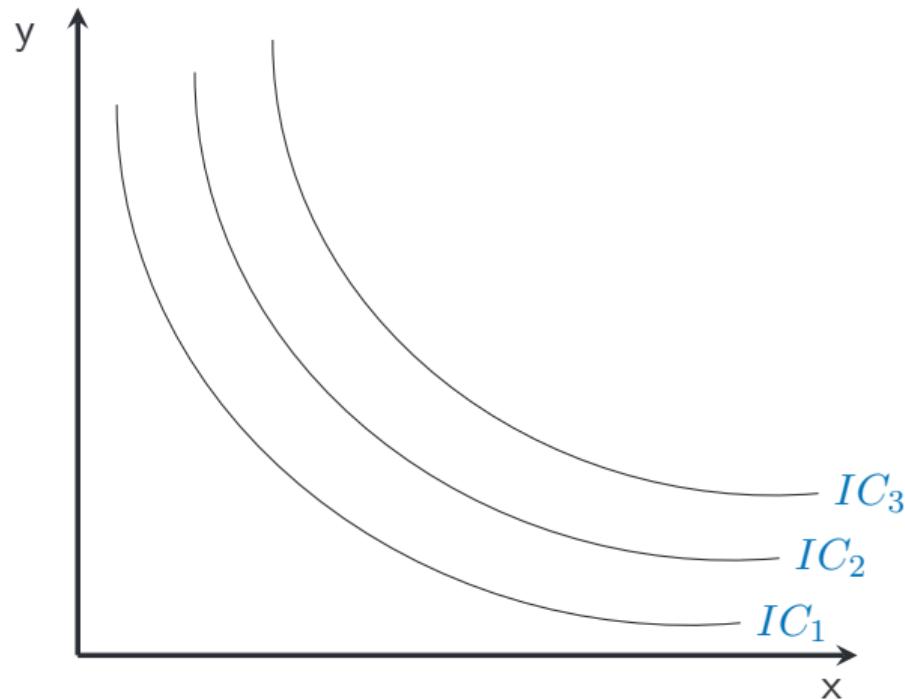


Indifference curves

Utils



Indifference curves



$IC_3 \rightarrow$ Utility level U_3
 $IC_2 \rightarrow$ Utility level U_2
 $IC_1 \rightarrow$ Utility level U_1

Axiom 4: Non-satiation (never get enough)

We usually use two additional axioms

- Introduced to reflect observed behavior and to simplify
- But, they are not *necessary* for a theory of rational choice

Axiom 4: Non-Satiation

- Given two bundles X and Y , if $X_A = X_B$ and $Y_A > Y_B$ then $A \succ B$, regardless of the levels of X_A, X_B, Y_A, Y_B
- Implications:
 1. The consumer always places positive value on more consumption
 2. Indifference curve map stretches out endlessly

Axiom 5: Diminishing marginal rate of substitution

- “The more of something you have, the less you value a bit more of it (relative to alternatives)”
 - Captures, what we believe, is a fundamental feature of human preferences
 - Role in consumer theory:
 - » Makes the mathematics of consumer theory much simpler
 - » Avoids consumers spending all their money on one good
- Need to define **Marginal Rate of Substitution** first

Marginal rate of substitution

Definition (Marginal rate of substitution)

MRS measures willingness to trade one bundle for another

Example

- Bundle $A = (1 \text{ cup of coldbrew, } 12 \text{ pieces of sushi})$
- Bundle $B = (2 \text{ cups of coldbrew, } 8 \text{ pieces of sushi})$
- Let's say that the consumer is *indifferent* between these two bundles
- Consumer is indifferent to having 4 fewer pieces of sushi for 1 more cup of coldbrew

$$MRS(\text{cups of coldbrew for sushi}) = |-4|$$

$$MRS \left[\frac{\text{CB}}{\text{Sushi}} \right]_{U=\bar{u}} \equiv \left[\frac{\Delta \text{Sushi}}{\Delta \text{CB}} \right]_{U=\bar{u}}$$

- MRS is measured along an indifference curve and *may* vary along an indifference curve
- MRS is defined relative to some bundle (starting point)

Marginal rate of substitution

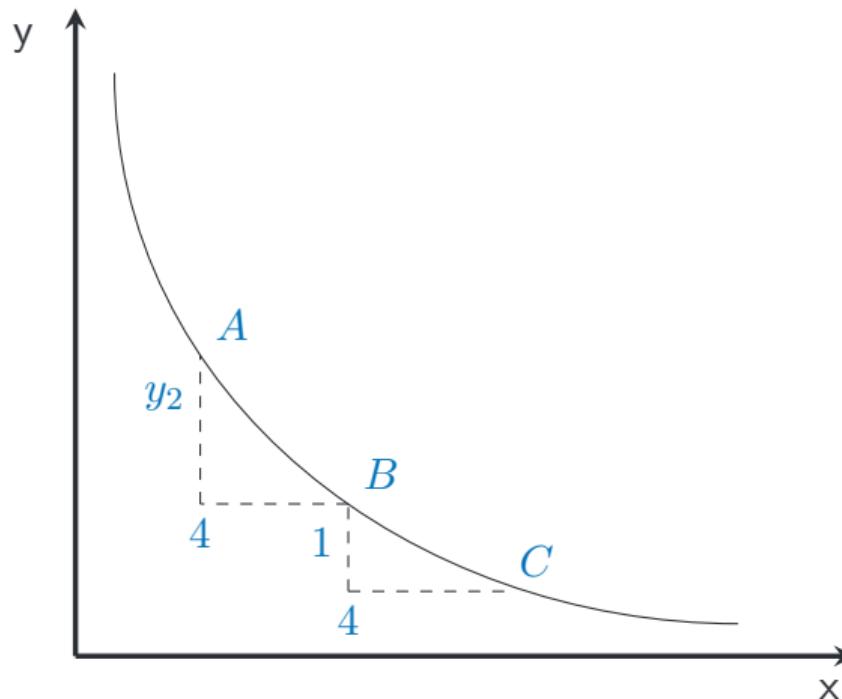
- By definition, utility is constant along an indifference curve:

$$\begin{aligned}\bar{U} &= U(x, y) \\ 0 &= \frac{\partial U}{\partial x} dx + \frac{\partial U}{\partial y} dy \\ 0 &= MU_x dx + MU_y dy \\ -\frac{dy}{dx} &= \frac{MU_x}{MU_y} = \text{MRS of } x \text{ for } y\end{aligned}$$

- MRS of x for y is the marginal utility of x divided by the marginal utility of y (holding total utility constant), which is equal to $-dy/dx$.
- “How much y do you need to compensate for a unit loss in x ?”

Marginal rate of substitution

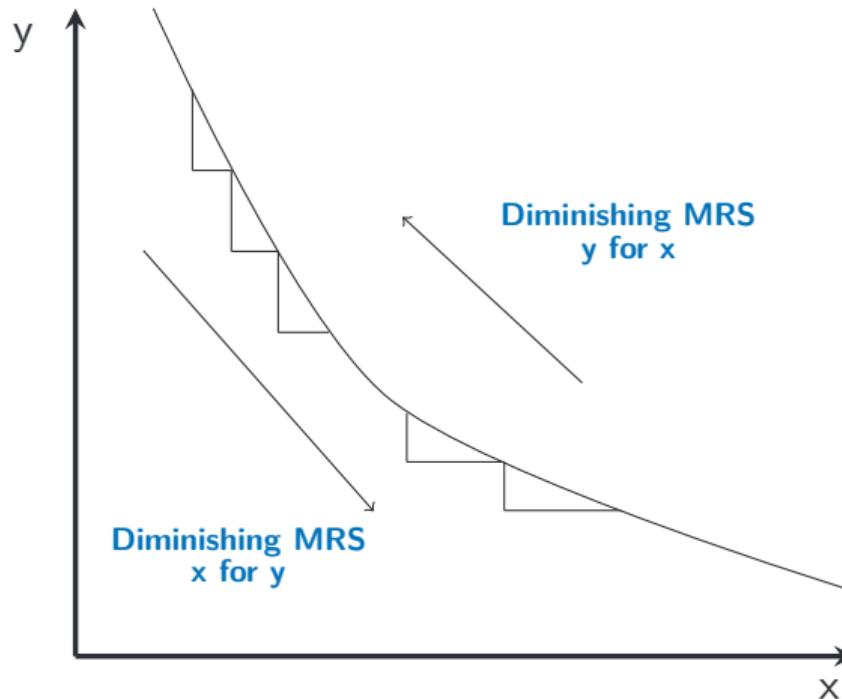
- MRS must always be evaluated at some particular point



Axiom 5: Diminishing marginal rate of substitution

Axiom 5: The MRS of x for y decreases as x increases relative to y

- The ratio MU_x/MU_y is decreasing in x



Convexity and MRS

- Diminishing MRS implies that consumers prefer diversity in consumption
- A convex utility function exhibits diminishing MRS

Definition

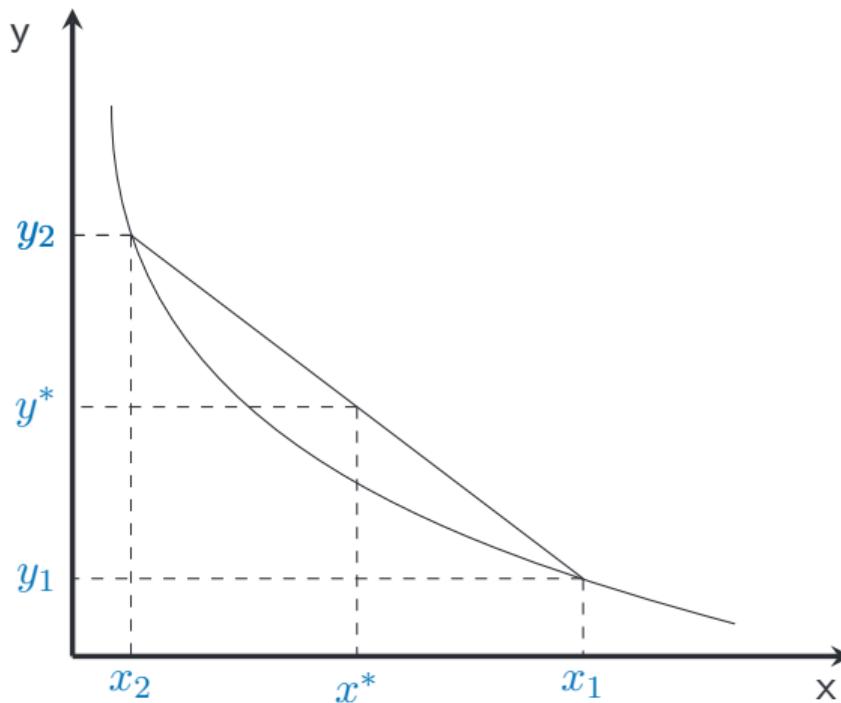
A function $U(x, y)$ is convex if for any arguments (x_1, y_1) and (x_2, y_2) where $(x_1, y_1) \neq (x_2, y_2)$:

$$U(\alpha x_1 + (1 - \alpha)x_2, \alpha y_1 + (1 - \alpha)y_2) \geq \alpha U(x_1, y_1) + (1 - \alpha)U(x_2, y_2),$$

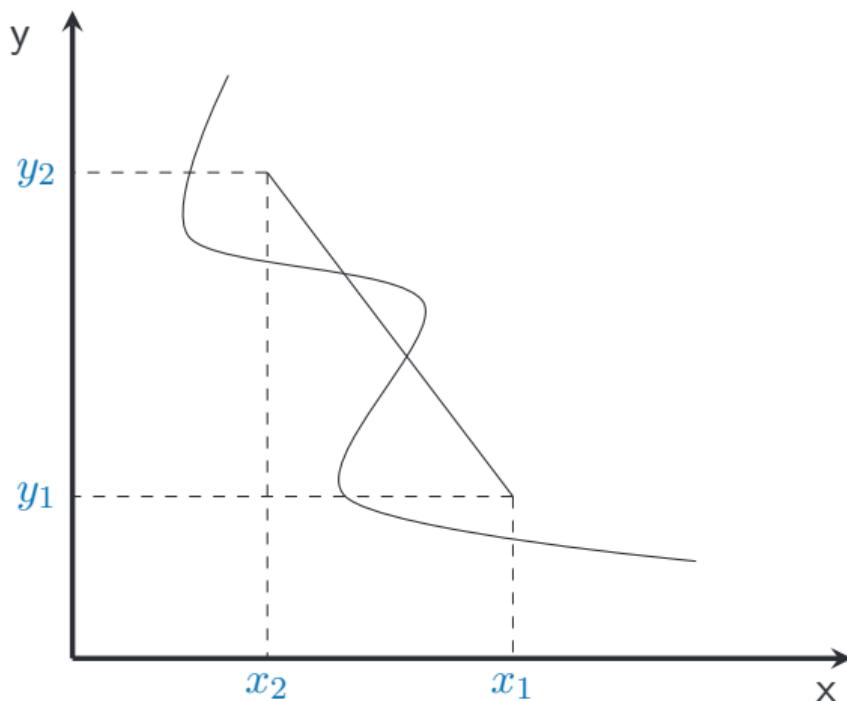
where $\alpha \in (0, 1)$.

Example of convex utility function

A utility function $U(\cdot)$ exhibits diminishing MRS iff the indifference curves of $U(\cdot)$ are convex.

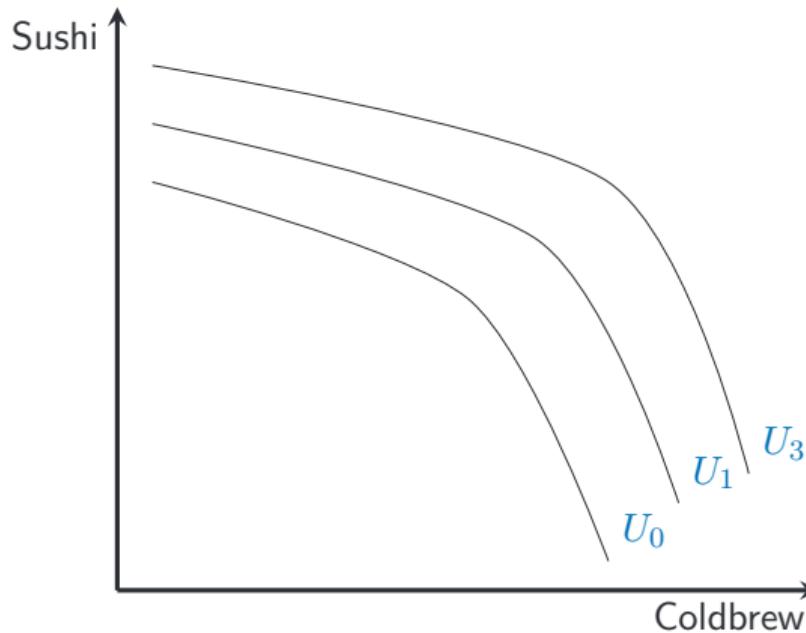


Example of non-convex utility function



Example of concave utility function

- Suppose you love coldbrew and sushi, but dislike consuming them together



- If your indifference curves were concave as above, you should not diversify consumption

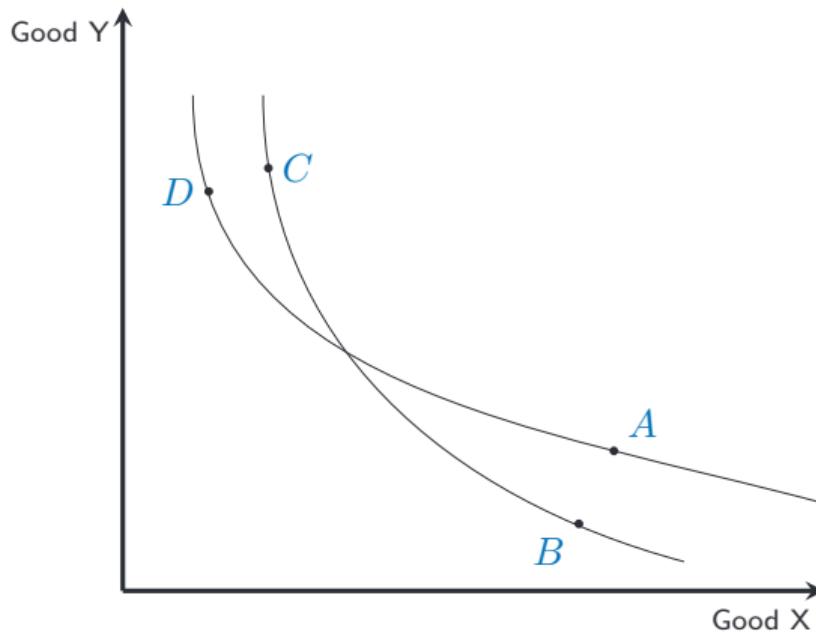
Back to Indifference Curves

Properties of indifference curves

1. Every consumption bundle lies on some indifference curve
(Axiom 1: Completeness)
2. Indifference curves are smooth
(Axiom 3: Continuity)
3. Indifference curves are convex
(Axiom 5: Diminishing MRS)
4. Indifference curves cannot intersect ...

Non-crossing of indifference curves

- Proof: say two indifference curves intersect:



- According to these indifference curves, (i) $A \succsim B$ (by non-satiation), (ii) $B \succsim C$, (iii) $C \succsim D$ (by non-satiation), (iv) $D \succsim A$
- By transitivity, $A \succsim D$ and $A \succsim D$, which is a contradiction

Cardinal vs ordinal utility

- Utility function $U(x, y) = f(x, y)$ is cardinal
 - It reads off “utils” as a function of consumption
 - But, choices are inherently ordinal
- We’d like to relax the notion of utility functions to make them ordinal rather than cardinal
 - That is, we want ‘same preferences’ but we don’t care about units
- What does it mean for two utility functions to have the “**same preferences**”?

Monotone transformation

Q: How do we preserve properties of utility that we care about and believe in without imposing cardinal properties?

We say that a utility function is defined only up to a **positive monotone transformation**

Definition (Monotone Transformation)

Let I be an interval on the real line (\mathbb{R}) then: $g : I \rightarrow \mathbb{R}$ is a monotone transformation if g is a strictly increasing function on I .

If $g(\cdot)$ is a positive monotone transformation of $f(\cdot)$, we will say they $g(\cdot)$ and $f(\cdot)$ are identical for purposes of utility theory

If $g(x)$ is differentiable and monotone, then $g'(x) > 0 \forall x$

Monotone and non-monotone transformations

Examples

Let y be defined on \mathbb{R} , and let x be defined as:

1. $x = 2y + 1$ YES
2. $x = \exp(y)$ YES
3. $x = \text{abs}(y)$ NO
4. $x = y^3$ YES
5. $x = -\frac{1}{y}$ YES
6. $x = \max(y^2, y^3)$ NO
7. $x = 2y - y^2$ NO

Monotone Transformation of a Utility Function

- If $U_2(\cdot)$ is a monotone transformation of $U_1(\cdot)$, then:
 1. $U_2(\cdot) = f(U_1(\cdot))$ where $f(\cdot)$ is monotone in U_1
 2. U_1 and U_2 exhibit identical preference rankings
 3. MRS of $U_1(\bar{U})$ and $U_2(\bar{U})$ are the same
 4. U_1 and U_2 are equivalent for consumer theory
- Example: $U(x, y) = x^\alpha y^\beta$ (Cobb-Douglas)

Cobb-Douglas example: Monotone transformation

- What is the MRS along an indifference curve U_0 ?

$$\begin{aligned}U_0 &= x_0^\alpha y_0^\beta \\dU_0 &= \alpha x_0^{\alpha-1} y_0^\beta dx + \beta x_0^\alpha y_0^{\beta-1} dy \\ \left. \frac{dy}{dx} \right|_{U=U_0} &= -\frac{\alpha x_0^{\alpha-1} y_0^\beta}{\beta x_0^\alpha y_0^{\beta-1}} = \frac{\alpha}{\beta} \frac{y_0}{x_0} = \frac{\partial U / \partial x}{\partial U / \partial y}\end{aligned}$$

- Consider now a monotonic transformation of U :

$$\begin{aligned}U^1(x, y) &= x^\alpha y^\beta \\U^2(x, y) &= \ln(U^1(x, y)) \\U^2 &= \alpha \ln x + \beta \ln y\end{aligned}$$

Cobb-Douglas example: Monotone transformation

- What is the MRS of U^2 along an indifference curve?

$$\begin{aligned} U_0^2 &= \ln U_0 = \alpha \ln x_0 + \beta \ln y_0 \\ dU_0^2 &= \frac{\alpha}{x_0} dx + \frac{\beta}{y_0} dy = 0 \\ -\frac{dy}{dx} \Big|_{U^2=U_0^2} &= \frac{\alpha}{\beta} \frac{y_0}{x_0} = \frac{\partial U / \partial x}{\partial U / \partial y} \end{aligned}$$

- which is the same as we derived for U^1
- This is actually just an application of the chain rule

Why monotone transformations preserve the MRS

How we know that monotonic transformations always preserve the MRS of a utility function?

- Let $U = f(x, y)$ be a utility function
- Let $g(U)$ be a monotonic transformation of $U = f(x, y)$ and differentiable
- The MRS of $g(U)$ along an indifference curve where $U_0 = f(x_0, y_0)$ and $g(U_0) = g(f(x_0, y_0))$
- By totally differentiating this equality we can obtain the MRS.

$$dg(U_0) = g'(f(x_0, y_0))f_x(x_0, y_0)dx + g'(f(x_0, y_0))f_y(x_0, y_0)dy$$

$$\left. -\frac{dy}{dx} \right|_{g(U)=g(U_0)} = \frac{g'(f(x_0, y_0))f_x(x_0, y_0)}{g'(f(x_0, y_0))f_y(x_0, y_0)} = \frac{f_x(x_0, y_0)}{f_y(x_0, y_0)} = \frac{\partial U / \partial x}{\partial U / \partial y}$$

which is the MRS of the original function $U(x, y)$

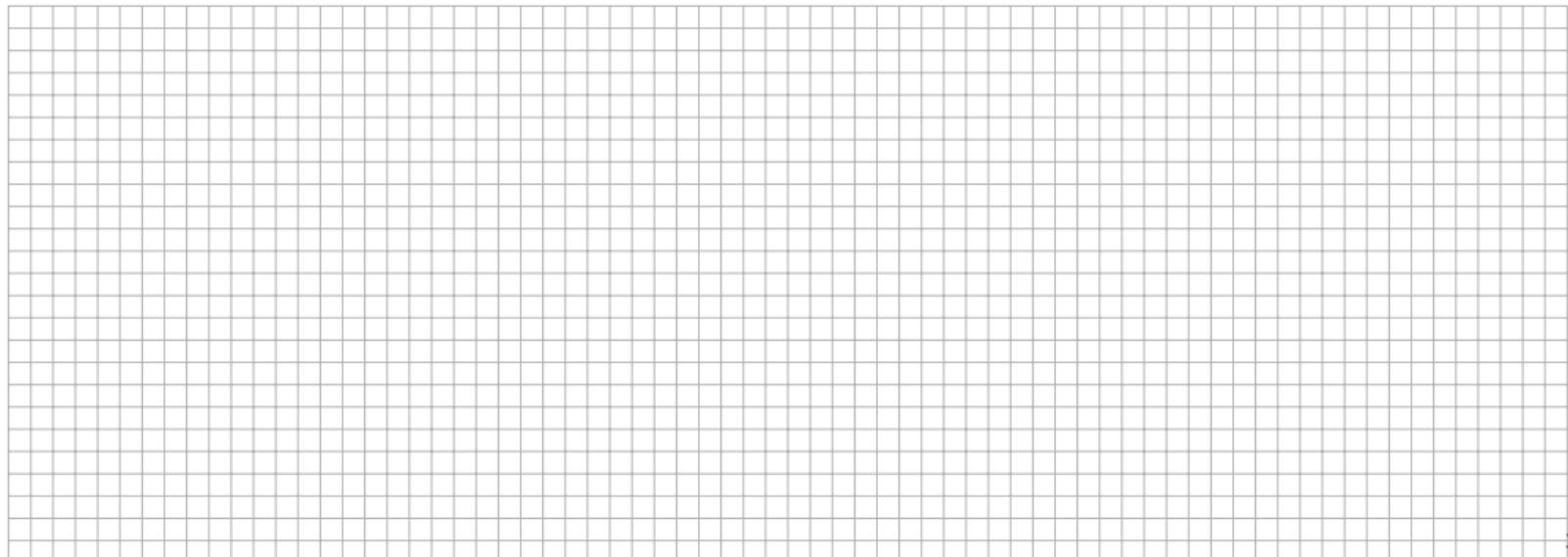
Utility maximization

Utility maximization subject to budget constraint

- Maximize utility subject to budget constraint
 - Utility function (preferences)
 - » Consumer wants to maximize $U(x)$
 - Budget constraint
 - » Has a maximum \$ amount that he/she can spend
 - Price vector
 - » Total possible purchases depend on price of goods
 - We know that the consumer can make a choice because of completeness
- Characteristics of the solution
 - Budget exhaustion (non-satiation)
 - For most solutions: psychic trade-off = monetary payoff
 - » Psychic trade-off is MRS
 - » Monetary trade-off is the price ratio

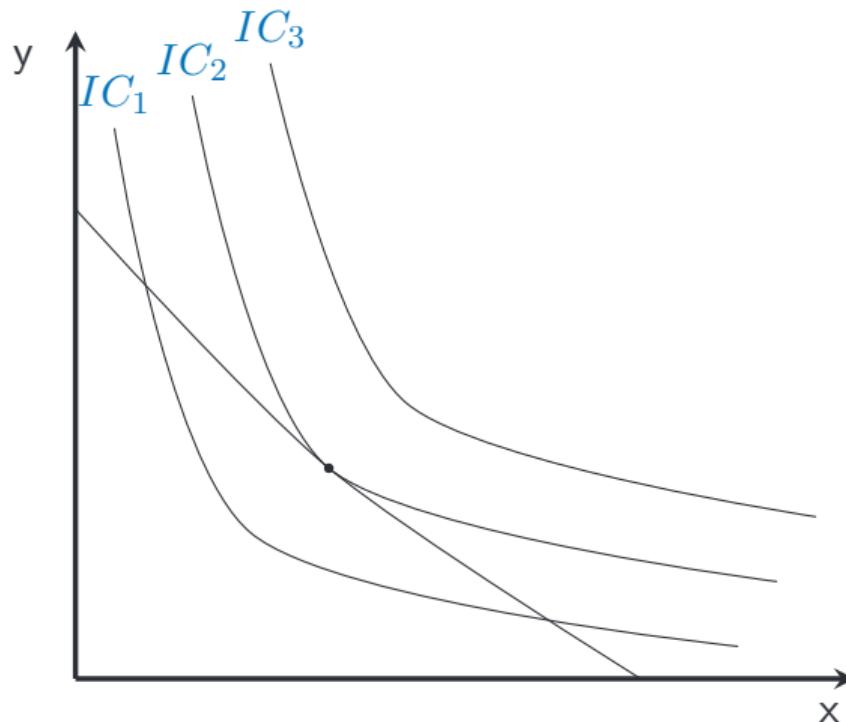
Consumer's problem

- Utility maximization corresponds to point A
 - The slope of the budget set is equal to $-\frac{p_x}{p_y}$
 - The slope of each indifference curves is given by the MRS
- Every bundle is on some indifference curve (completeness)



Interior solutions

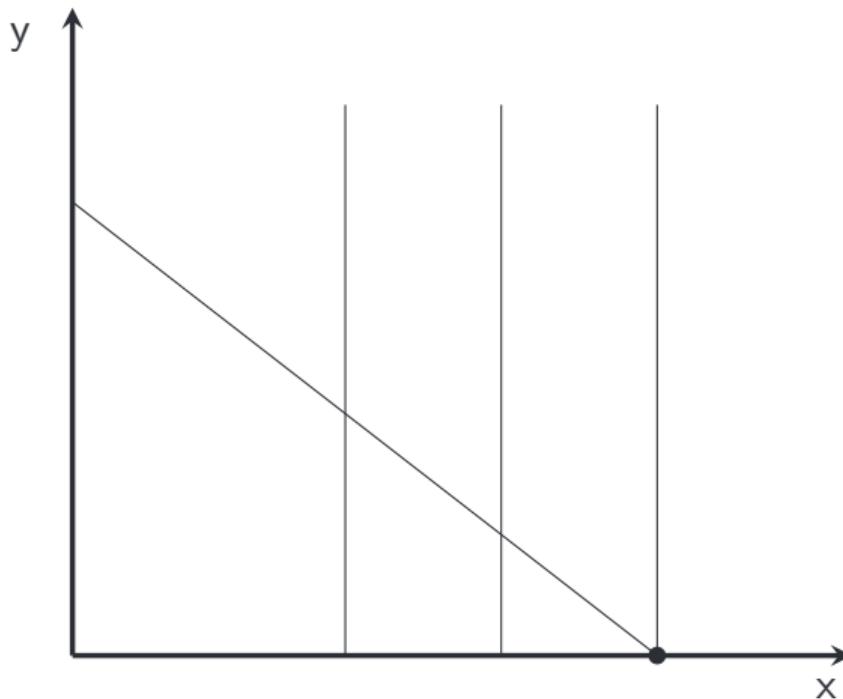
- Two types of solutions: Interior solutions and corner solutions



**Oddball cases —
We won't be focusing on these**

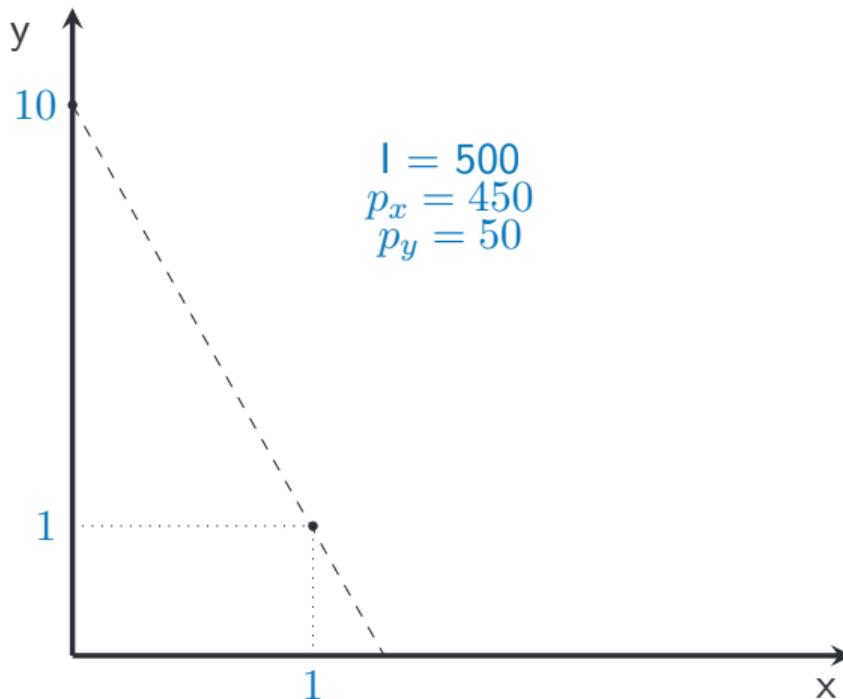
Corner solutions

- Vertical indifference curves implies that the consumer is indifferent to the consumption of good y

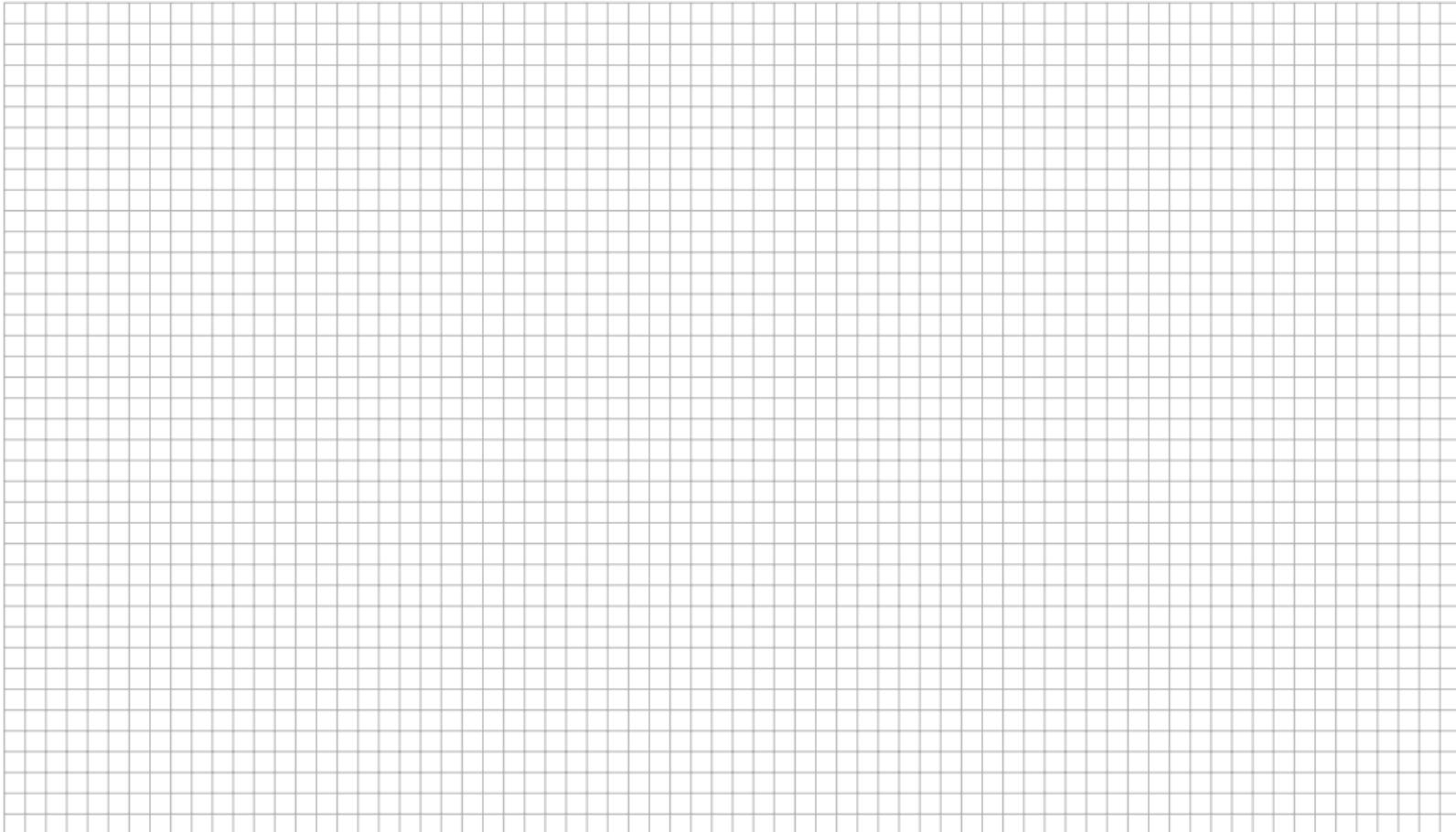


Integer constraints

- Another type of “corner” solution can result from indivisibilities/integer constraints
 - Only two bundles are feasible



Non-negativity constraints — Autor will attempt to draw



Utility maximization

The math you've been waiting for!

Mathematical solution to the Consumer's Problem

- Problem:

$$\begin{aligned} & \max_{x,y} U(x, y) \\ & \text{s.t. } p_x x + p_y y \leq I \end{aligned}$$

- Lagrangian version:

$$\max_{x,y,\lambda} L(x, y, \lambda) = \max_{x,y,\lambda} U(x, y) + \lambda(I - p_x x - p_y y)$$

- First-order conditions (FOC):

$$1. \quad \frac{\partial L}{\partial x} = U_x - \lambda p_x = 0$$

$$2. \quad \frac{\partial L}{\partial y} = U_y - \lambda p_y = 0$$

$$3. \quad \frac{\partial L}{\partial \lambda} = I - p_x x - p_y y = 0$$

Mathematical solution to the Consumer's Problem

$$1. \quad \frac{\partial L}{\partial x} = U_x - \lambda p_x = 0$$

$$2. \quad \frac{\partial L}{\partial y} = U_y - \lambda p_y = 0$$

$$3. \quad \frac{\partial L}{\partial \lambda} = I - p_x x - p_y y = 0$$

- Equation (3) states that the consumer spends all of her money ('budget exhaustion')
- Rearranging (1) and (2):

$$\frac{U_x}{U_y} = \frac{p_x}{p_y}$$

- Q: What does this expression mean *intuitively*?
- The psychic trade-off is equal to the monetary trade-off between the two goods*

Mathematical solution to the Consumer's Problem

$$1. \quad \frac{\partial L}{\partial x} = U_x - \lambda p_x = 0$$

$$2. \quad \frac{\partial L}{\partial y} = U_y - \lambda p_y = 0$$

$$3. \quad \frac{\partial L}{\partial \lambda} = I - p_x x - p_y y = 0$$

- Notice that:

$$\frac{U_x}{p_x} = \lambda$$

$$\frac{U_y}{p_y} = \lambda$$

- What is the meaning of λ ?

An example problem

Utility maximization: An example problem

- Consider the following example problem:

$$U(x, y) = \frac{1}{4} \ln x + \frac{3}{4} \ln y$$

- Notice that this utility function satisfies all axioms:

1. Completeness, transitivity, continuity

2. Non-satiation: $U_x = \frac{1}{4x} > 0$ for all $x > 0$. $U_y = \frac{3}{4y} > 0$ for all $y > 0$

3. Diminishing marginal rate of substitution:

- » Along an indifference curve: $\bar{U} = \frac{1}{4} \ln x_0 + \frac{3}{4} \ln y_0$.

- » Totally differentiate: $0 = \frac{1}{4x_0} dx + \frac{3}{4y_0} dy$.

- » Yields marginal rate of substitution $-\frac{dy}{dx}|_{\bar{U}} = \frac{U_x}{U_y} = \frac{4y_0}{12x_0}$.

Utility maximization: An example problem

- Example values: $p_x = 1$, $p_y = 2$, $I = 12$. Write the Lagrangian for this utility function given prices and income:

$$\begin{aligned} & \max_{x,y} U(x,y) \\ \text{s.t. } & p_x x + p_y y \leq I \\ L &= \frac{1}{4} \ln x + \frac{3}{4} \ln y + \lambda(12 - x - 2y) \end{aligned}$$

1. $\frac{\partial L}{\partial x} = \frac{1}{4x} - \lambda = 0$
2. $\frac{\partial L}{\partial y} = \frac{3}{4y} - 2\lambda = 0$
3. $\frac{\partial L}{\partial \lambda} = 12 - x - 2y = 0$

Utility maximization: An example Problem

$$L = \frac{1}{4} \ln x + \frac{3}{4} \ln y + \lambda(12 - x - 2y)$$

1. $\frac{\partial L}{\partial x} = \frac{1}{4x} - \lambda = 0$

2. $\frac{\partial L}{\partial y} = \frac{3}{4y} - 2\lambda = 0$

3. $\frac{\partial L}{\partial \lambda} = 12 - x - 2y = 0$

– Rearranging (1) and (2), we have

$$\frac{2/4x}{3/4y} = \frac{2}{3}$$
$$\frac{U_x}{U_y} = \frac{p_x}{p_y}$$

An Example Problem

- We have:

$$\lambda = \frac{1}{4x^*} = \frac{3}{8y^*} \Rightarrow x^* = \frac{2}{3}y^*.$$

- Now using the budget constraint:

$$x + 2y = 12 \Rightarrow \frac{2}{3}y^* + 2y^* = \frac{8}{3}y^* = 12$$

- And therefore: $y^* = 4.5, x^* = 3$

Interpreting the Lagrange multiplier (λ) — The mathematics of ‘bang for the buck’

Interpretation of λ , the Lagrange multiplier

- At the solution, the following conditions will hold:

$$\frac{\partial U/\partial x_1}{p_1} = \frac{\partial U/\partial x_2}{p_2} = \dots = \frac{\partial U/\partial x_n}{p_n} = \lambda$$

- So what is $\frac{dU^*}{dI}$? Return to Lagrangian:

$$L = U(x, y) + \lambda(I - p_x x - p_y y)$$

$$\frac{dL}{dI} = \left(U_x \frac{\partial x^*}{\partial I} - \lambda p_x \frac{\partial x^*}{\partial I} \right) + \left(U_y \frac{\partial y^*}{\partial I} - \lambda p_y \frac{\partial y^*}{\partial I} \right) + \lambda$$

- Recall that

$$\frac{U_x}{p_x} = \frac{U_y}{p_y} = \lambda$$

- Substituting for λ at optimal choices, we get that

$$\lambda = \frac{dL}{dI} = \frac{\partial L}{\partial I}$$

- This is the **envelope theorem** at work!

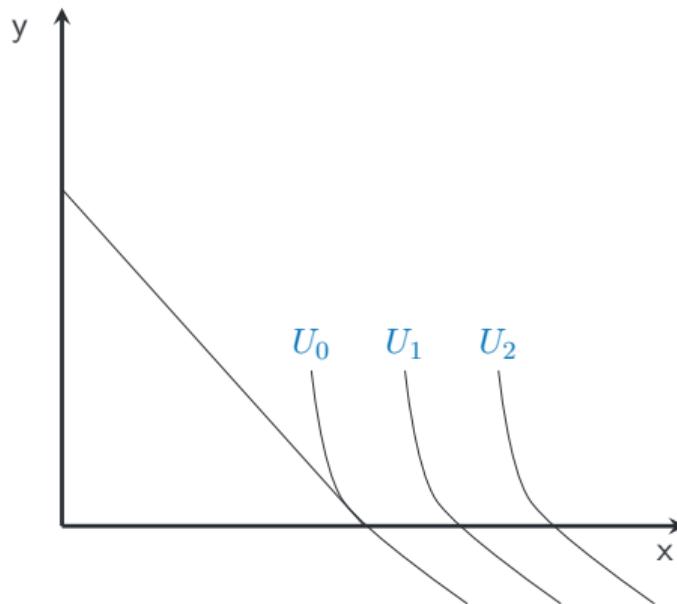
Interpretation of λ , the Lagrange multiplier

- λ equals the “shadow price” of the budget constraint
 - Additional utils that could be obtained with the next dollar of consumption
 - Note that this shadow price is not uniquely defined since it corresponds to the marginal utility of income in “utils”
- We could have concluded that $dL/dI = \lambda$ directly using the envelope theorem:

$$\frac{dU^*}{dI} = \frac{\partial L}{\partial I} = \lambda$$

Corner solutions and the Lagrangian

- When at a corner solution, a point of tangency need not exist



- Need to modify Lagrangian to include “non-negativity constraints”:

$$x \geq 0, y \geq 0$$

The road ahead — in consumer theory

The road ahead – In consumer theory

