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Unconstrained Optimization: Single Variable

In many fields, but especially in economics, optimizing an objective function is a very
important tool. For example, suppose a price-taking company has a profit function
7(q) = pq — g* and wants to produce goods at quantity g* that maximizes its profits.

How do we find g*?

Step 1: Find the ‘critical point’, or the value of g where d%ﬁ) = p — 29 = 0. Note that

economists often refer to dzgq) = 0 as a “first order condition", or FOC. Critical

points are typically “candidates” for minimums or maximums of a function, but

it is not guaranteed.

Step 2: In the single variable case, there is a simple way to check if if the critical point

you found in step 1 is a local minimum or maximum. Check the sign of of the
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imum. This is often called a “second order condition", or SOC. In this example,
2

second derivative, ., which can tell us whether we are at a local maximum

or minimum. If

- < 0, the function is concave at g%, so we are at a local

maximum. If . > 0, the function is convex at 4*, so we are at a local min-

— —2 and —2 < 0, which guarantees that 4* is a local maximum.

Because this profit function is concave, as shown in the figure below, it is intuitive that
the sign of the second derivative, which captures the rate of change of the slope of the

function, can tell you whether or not the critical point is a local minimum or maximum.

“Thanks to Professor Autor and Jon Cohen for sharing materials from previous years.
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This method doesn’t help when the function is not “well-behaved" (see figure below for
a few examples). In 14.03/003, we will typically work with “well-behaved" functions

that are continuous, differentiable, and concave.
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Unconstrained Optimization: Multiple Variables

If we have a function of multiple variables, y = f(x1,x2, ..., X»), then the first step of
finding critical points is similar to that of single variables. We take the partial deriva-
tives of the objective function with respect to each variable and set them equal to zero.
The partial derivative of a multivariate function such as f with respect to one variable
(say x1) is the derivative of f treating the other variables (in this case all the other x;...x;)
as constants. Partial derivatives are denoted by the 0 symbol or sometimes as f; (partial

derivative of f(x1, x2, ..., x,) with respect to x1).

The critical points of this function are the points where:
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and these n equations are the “first order conditions". Again, these are points where the
slope of the function is zero in every direction, and they are “candidates" for minimums
and maximums of f(x1, X2, ..., X, ). To know whether these critical points are global max-
imums or minimums, we again need to consider the second order conditions. To know
whether these critical points are global maximums or minimums, we again need to con-
sider the second order conditions. For multivariable functions the sufficient conditions
for a critical point to be a minimum or a maximum turn out to be whether the Hessian
matrix is positive definite or negative definite (all negative or all positive eigenvalues).
Fortunately, we won’t worry about this much in 14.03/003 and when we do it'll be in a
case with two variables in which case there’s a shortcut. The Second Order Condition

(SOC) for a maximum when there is more than one variable has the following form:

f11 < 0
fiife — (fi2)* > 0

Note that o, < 0is implied by the above, since if fi; and f,> have opposite signs there
is no way to get f11f22 — ( f12)? > 0. Also note that it is not sufficient to have just f11 <0
and f» < 0. For a minimum, the SOC takes the form

f11 > 0
fiife — (f2)* > 0

If f11f22 — (f12)? < 0, then the point in question is neither a minimum nor a maximum.
To simplify this we will often work with concave functions because they have the nice
property that the FOC is sufficient for a global max.

A concave function is a function that always lies below any hyperplane that is tangent to
it. More formally, the definition of concave functions is that for any two points a, b and
a € (0,1):

flaa+ (1 —a)b) > af(a) + (1 —a)f(b)

Implicit Function Theorem and Envelope Theorem

So far, we’ve discussed how to find values (e.g. 7*) that maximize an objective function
(e.g. profits 7t(q)) along with the maximized values of the objective (77*). But what if we



want to know how a maximized value changes if some parameters are altered? We will
tirst discuss an example and walk through some math “tricks" that allow us to more
easily find these “changes" and deal with maximized functions, which are themselves
functions of certain parameters but distinct from the objective functions. Suppose x is
the amount of ice cream you buy, u is the utility you get, and a is the “ambient temper-
ature" that day (out of your control when you are maximizing your utility). Your utility

function is as follows:
u(x;a) = —x* +ax

On any day, at a given ambient temperature a, you optimize maximizing your utility to
buy x*(a) ice creams to get maximal utility u* = u(x*(a);a). If we fix the temperature
at some a = a;, the utility function becomes a univariate function (a downward facing
parabola). The figure below plots u(x;a) for four different values of a;. The peak of
each parabola is the maximized utility u* = u(x*(a);a). The function u* = u(x*(a);a)
is traced out by the peaks of each u* = u(x*(a);a) (the “upper envelope" - shown by
the bold line on the graph).
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It might be interesting to know how your maximized utility, u*, changes with temper-

ature. Because for any given value of a, you optimize x to purchase x*(a) ice creams,

what we are really after is Lu(x*(a);a). Another object of interest may be how this
optimized bundle of ice cream, x*(a), changes as a changes (i.e. dx;g”)). One way to

do this, of course, is the explicit way using the tools we have already learned. First,
we could solve for x*(a) by taking the first order conditions, then find the expression
for u(x*(a);a) by substituting x*(a) into the functional form of u and then taking the
derivative with respect to a for both.
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It turns out that with a few mathematical tricks, however, there is a shortcut to find
both of these terms more easily. Consider a multivariate function f(x,y). Recall that
when taking the partial derivative of a multivariate function such as f with respect
to one variable (say x), we treat the other variable (in this case y) as a constant. Partial
derivatives are denoted by the d symbol, or sometimes as f, (partial derivative of f(x, )
with respect to x). Next, we introduce the notion of a total derivatives. In general, it
is not the case that the partial derivative of a multivariate function is equal to the total
derivative. That is, in general % #* %. Why? If y is also a function of x, then the total
derivative of the function f(x,y(x)) is a combination of a direct effect of varying x on

the value of f but also the indirect effect of how varying x affects y, which in turn also
affects f.

The chain rule for total derivatives is as follows:

g o o
dx - ox dy dx
N N

Total derivative Direct Effect 1, qirect Effect

Now, let’s go back to our ice cream example. At the optimized level of ice cream, x*,
the first order condition is w = —2x* 4+ a = 0. This first order condition is actually
a level curve, which is often mathematically denoted as G(x*,a) = 0. We can now take
the total derivative of G with respect to a on both sides of this level curve. Notice that
a nice feature of level curves is that the total derivative is equal to zero (by definition),
which gives us a solvable equation that allows us to simply “rearrange” and obtain an

; dx*.
expression for 77

G(x*,a)=—-2x"+a=0
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which is the same answer as we previously obtained when solving explicitly for x*(a).
In taking this shortcut, in addition to using the expression for total derivatives, we relied
on the implicit function theorem, which guarantees that under some mild mathematical
conditions (that will almost always apply in 14.03/003 problems) that x*(a) exists and
that we can therefore use the expression for the total derivatives shown above to solve

for dx;é”) . In economic applications, we often end up with implicit functions where ex-

ogenous variables (e.g. a in this example) and endogenous variables (e.g. x*(a) in this
example) are all mixed together but we still want to know how the change in one vari-
able (say a) affects another say (x). While in this simple example, it’s straightforward to
solve for x*(a) explicitly, sometimes with more complicated functional forms we can’t

solve explicitly for x*(a). However, the derivative dx;;“) may still exist and the implicit

function theorem gives us the green light to solve for it. Here is a formal statement of
the implicit function theorem:

Theorem 1 (Implicit Function Theorem). Assume that F is a scalar function of class C' defined
for all (x,y) in an open set U C R2. If F(a,b) = 0 and 0,F(a,b) # 0, then the equation
F(x,y) = 0 implicitly determines y as a C! function of x, i.e. y = f(x), for x near a. Moreover,
the function f is of class C?, and its derivatives may be determined by differentiating the identity
F(x, f(x)) = 0and solving to find the partial derivatives of f.

We now use the expression of the total derivative to obtain an expression for %u (x*(a);a):

@y (@);a) = 2 D30) | Ol (@) 1)
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We are interested in the derivative of the maximized utility function u(x*(a);a), and we
know that at the optimum x*, the term W = 0. This means that Lu(x*(a);a)
reduces to the partial derivative, i.e. W, which is simply x* = 7. That’s the same
answer that we got before! This equivalence between the total derivative and the partial
derivative at the optimum is the envelope theorem. In other words, the envelope theorem
states that because the slope of u(x;a) when we are close to x*(a) is zero, if we move
a around, x*(a) will change, but u(x*(a);a) won’t change much and so the indirect
effects don’t do much and only the direct effect remains. Here is a formal statement of
the envelope theorem:

Theorem 2 (Envelope Theorem for the unconstrained case). Let f(x,a) be a C' function of
x € R™ and the scalar a. For each a consider the unconstrained maximization:

max f(x;a)
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Let x* (a) be a solution of this problem. Suppose that x*(a) is a C! function of a. Then,

T (et (@),0) = 2 f(x" (a),0)

Proof.

where the first term of the derivative is zero because of the FOCs of the maximization

problem to obtain x*:

of . o
achx (a),a) =0 Vi=1,2,..,n

Constrained Optimization

Most of the optimization problems we deal with in economics are subject to constraints
(e.g. maximizing utility subject to a budget). A technique to solve constrained op-
timization problems is the method of Lagrange multipliers, which is a special case of
the Karush-Kuhn-Tucker (KKT) conditions used more broadly in optimization. Sup-
pose we want to maximize an objective function f(x1,x,...,x,) subject to the con-
straint that g(x1, x2, ..., x,) < 0. We typically assume that this inequality is an equality,
g(x1,x2,...,x,) = 0 (i.e. “the constraint binds"). Why? Because we are usually trying
to maximize something like utility subject to a budget constraint. Utility is (usually)
everywhere increasing in the goods you're consuming, so you’ll want to exhaust your
budget constraint (i.e. spend all your money - leave nothing on the table!) However,
if you want to be very careful you can also find the critical points of the unconstrained
function. If any of those satisfy the constraint, plug them in along with the solution(s)
from the constrained optimization. That will ensure you find the maximum and/or
minimum, even if the constraint does not bind. Assuming the constraint binds, the

problem setup is then:

max y = f(x1,x2,...,Xn)

st g(x1,x2, 0, x0) = 0



The Lagrangian function function for this problem is

L= f(x1,x2,....%n) + Ag(x1, X2, ..., Xn)

where A is called the Lagrange multiplier. We then treat the Lagrangian function like an
unconstrained optimization problem. We have n + 1 first-order conditions to take (one
for each x plus one for the newly introduced variable A), which allows us to solve the
system of equations for the optimized values x1, x3,...,x,,. These first order conditions
are:
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We then solve simultaneously for x, ..., x,;, A to find x*.

Example: Optimal fence dimensions

Suppose we want to maximize the area inside a rectangular fence, subject to a fixed

amount of fencing p. Formally, the problem setup is:

max Xy

st.2x+2y = p
The Lagrangian for this problem is:

L = xy+A(p—2x—2y)



And the three FOCs for this problem are:

oL
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W x—2A=0
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. p—2x—2y=20

Solving the system of equations yields the optimized width and length of the rectangle
(x* and y*), as well as the Lagrange multiplier A:

x* =

<
*
|
RS

A =

o

We say A is the “shadow price of the constraint." In other words, A represents how
much the objective function changes if we relax the constraint by one unit. To see this,
suppose p = 80, so x = y = 20 and A = 10. Then the objective function xy = 400. Now
suppose we relax the constraint by 1, so p = 81. Then x = y = 20.25. The objective
function xy = 410.0625. The objective changed by ~10, which is the same as A .

Envelope Theorem for Constrained Problems

Let x*(a) denote the solution to the following problem:

max y = f(x)
st.g(x;a) = 0

Let A be the Lagrange multiplier for the constraint in this problem.
Then:

d o _,980ga) _ 9 .0 .
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Why is this true? First use the chain rule:

) =
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The FOC for maximizing the Lagrangean L (x, A, a) = f(x) + Ag(x;a) are

IL(x,Aa) _of () .08
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But by taking the derivative of g(x;a) = 0 with respect to a we get

Z dg dx; ag _ 0
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Duality

Now that we have discussed constrained optimization, we want to briefly introduce
the notion of duality. Broadly, duality is the notion that optimization problems can be

viewed from either of two perspectives:
1. Primal problem
2. Dual problem

In constrained convex optimization problems under certain conditions (basically all
problems we will consider in 14.03/003), the solutions to the dual problem and the
primal problem are equivalent. In economics, this fact is useful because the two per-
spectives may have different economic interpretations (while have the same solutions).
For instance, cost minimization (holding constant a target profit level) is the dual problem
of profit maximization (subject to a budget constraint) and utility maximization (sub-
ject to a budget constraint) is the dual problem of expenditure minimization (holding
constant a certain utility level). Below is an example to illustrate duality. Consider the
primal problem:

11
max z = Xx2y2

st.x+y = 4
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The dual problem is then:

min k
s.t. 2
ED

Xp

Notice that Ap # Ap, where P stands for primal and D stands for dual. Note that in this

case the choice of setting the maximization as the primal (and hence the minimization

as the dual) is arbitrary and it could have been set up the other way around with the

minimization as the primal and the maximization as the dual.
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