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Expectations and Random Variables

A random variable arises when we assign a numerical value to each event that might
occur. For example, an event can be the result of three coin tosses, then X = of Heads is
a random variable. Each random variable has a corresponding probability distribution
which is the likelihood that each possible value is assumed. In this example:

• Pr(X = 0) = 1
8

• Pr(X = 1) = 3
8

• Pr(X = 2) = 3
8

• Pr(X = 3) = 1
8

The expected value of X is the average value of X weighted by the likelihood of its
possible values:

E[X]︸︷︷︸
Unconditional Expectation

= ∑
xi

Pr(X = xi)

In this example, E[X] is simply 12
8 . If the random variable is continuous, then the ex-

pected value is:

E[X] =
∫ ∞

−∞
x f (x)dx

We might also be interested in how often a random variable “departs" from its expected
value. This is the variance of X:

Var(X) = E[(X − E[X])2] = E[X2]− (E[X])2

*Thanks to Professor Autor and Jon Cohen for sharing materials from previous years.

1



Note that (X − E[X])2 is a function of the random variable X and so is itself a random
variable and therefore has an expected value. When we transform random variables
(i.e. take some function of random variables), its variance may change. Adding a
constant to a random variable does not affect its variance, but multiplying a random
variable by a constant does. Let k and c be constants, then:

Var(kX + c) = k2Var(X)

Conditional Expectation

The conditional expectation of a random variable is the average realization of the ran-
dom variable in a subset of possible events. For some subset of events where Y = y, or in
other words, given Y = y:

E[X|Y = y] = ∑
xi

xiP(X = xi|Y = y) =
∫ ∞

−∞
x f (x|Y = y)dx

In general, the conditional and unconditional expected values need not be the same,
i.e. E[X|Y = y] ̸= E[X]. For example, let X be a random variable corresponding to the
value of a die, and A is another variable that takes the value of 1 if X is even and A = 0
otherwise, and B is another random variable that takes the value of 1 if X is prime and
B = 0 otherwise. We can think of the possible events as:

X 1 2 3 4 5 6

A 0 1 0 1 0 1

B 0 1 1 0 1 0

In this example, E[A] = 1
2 and E[A|B = 1] = 1

3 . For the first, you can visually see
that A has six possible values, and half the time it is 1 and the other half the time it is
0. For the latter, you only consider the columns where B = 1 and you can see that in
that subset of three events, a third of the time A = 1 and two thirds of the time A = 0.
Random variables are important in economics because we generally think of most of
the outcomes we measure or otherwise estimate to be realizations of random variables
governed by some underlying probability distribution we may not always know or that
we assume.

Potential Outcomes and Randomized Control Trials

Now we go back to discussing potential outcomes using the expectations notation we
just discussed. Suppose you are interested in measuring the causal effect of eating ultra-
processed foods on some health outcome, e.g. cholesterol, denoted by Y. Nagisa loves
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processed foods and has been consuming them daily for the last year. Salo, on the
other hand, dislikes them and hasn’t eaten any this past year. You measure each of
their cholesterol levels today and find that YNagisa = 330 and YSalo = 200. While these
numbers are interesting, they are not as informative as we might hope. Implicitly, each
of these is a realization of the potential outcomes. Specifically, we only observe each of
Nagisa and Salo today in 1 of 2 possible states of the world:

Ate UPFs

N

Did not eat UPFs

Ate UPFs

S

Did not eat UPFs

Let’s denote the path of having eaten UPFs as U = 1 and the path of not having eaten
UPFs as U = 0. Then, with this notation, we observe only YN,U=1 and YS,U=0 and
could in principle compute YN,U=1 − YS,U=0, but what we are really after is YN,U=1 −
YN,U=0 and/or YS,U=1 − YS,U=0. Each of these expressions tells us exactly how UPFs
affect Nagisa and Salo’s cholesterol levels relative to “counterfactual" Nagisa and Salo
who took the other path. Unfortunately, unless we have a portal to a parallel universe,
we have no way of ever knowing the values of YN,U=0 and YS,U=1. Why is this an issue?
Suppose that, the “truth" is actually as follows:

• YN,U=1 = 330

• YN,U=0 = 320

• YS,U=0 = 210

• YS,U=0 = 200

The naive difference between the cholesterol measures you took would give 130, when
in reality we can see that the true effect of the UPFs on cholesterol is 10 for both Nagisa
and Salo. The difference between 10 and 130 is called the selection bias. We can gain

3



some insight on selection bias and how it relates to our naive raw difference by adding
and subtracting YN,U=0 on the right hand side:

YN,U=1 − YS,U=0 = YN,U=1 − YN,U=0︸ ︷︷ ︸
Causal Effect

+YN,U=0 − YS,U=0︸ ︷︷ ︸
Selection Bias

Using the numbers we have above for the “truth", YN,U=0 −YS,U=0 = 320− 200 = 120 is
simply capturing how much higher Nagisa’s cholesterol would be compared to Salo’s
even if Nagisa did not eat UPFs. You might think that this issue is resolved if instead of
sampling two people, we surveyed a large number of people. Unfortunately, selection
bias will carry through even when working with large groups.
For example, suppose you surveyed M + N MIT students, M of which ate UPFs and N
of which did not. The difference in means of the first group’s cholesterol levels and that
of the second group is simply:

1
M

M

∑
i=1

Yi,U=1 −
1
N

N

∑
i=1

Yi,U=0

The average causal effect we are after is actually Avg[Yi,U=1 − Yi,U=0] taken over the
entire population, but we only observe the average Yi,U=1 among individuals who were
already choosing to each UPFs. Similarly, we only observe the average Yi,U=0 among
individuals who were already choosing not to each UPFs. We have reason to believe that
these two samples are not equal, i.e. those choosing to consume UPFs and those who
don’t may have different underlying health habits besides eating UPFs that affect their
cholesterol levels. When working with groups, the difference in group means is now
the average causal effect + selection bias where selection bias in this case is defined
as the difference in the average YU=0 between the two groups compared. What can
actually help address selection bias and help us estimate causal effects is randomization
along with the law of large numbers (‘LLN’). Suppose now that instead, we randomly
pick M individuals from Boston and assign them to a treatment group in a study, where
they are required to consume UPFs for a year. Similarly, we pick another N individuals
randomly from Boston and assign them to the control group, where they are required
to avoid consuming UPFs for a year. We introduce a new dummy variable, D, where
Di = 1 if an individual is in the treatment group and Di = 0 if an individual is in
the control group. For convenience, we will also assume that everyone has the same
treatment effect that has the value T:

Yi,U=1 = Yi,U=0 + T︸︷︷︸
Treatment Effect

∀i

The observed difference in average cholesterol levels between the treatment and the
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control group at the end of the study that we measure, E[Yi|Di = 1]− E[Yi|Di = 0], can
be decomposed into:

E[Yi,U=0 + T|Di = 1]− E[Yi,U=0|Di = 1]︸ ︷︷ ︸
Avg Treatment Effect on Treated

+ E[Yi,U=0|Di = 1]− E[Yi,U=0|Di = 0]︸ ︷︷ ︸
Selection Bias

The law of large numbers guarantees that the value of a sample average can be brought
“as close as we like" to the population average from which it is drawn as we increase
sample size. This means that each of the two terms in our expression for selection bias
gets closer and closer to the same value so the selection bias gets closer and closer to
zero. Suppose the underlying population of Boston is distributed such that the mean
cholesterol level of the population is µ0 if they didn’t eat UPFs. Because we randomly
sample M + N people in Boston and randomly assign M of them to be in the treat-
ment group (i.e. Di = 1) and the remaining N are therefore in the control group (i.e.
Di = 0), the individuals in both treatment and control are drawn from the same pop-
ulation. The LLN then guarantees that as M → ∞, the sample mean of the treatment
group 1

M ∑M
i=1 Yi,Ui=0,Di=1 → µ0 and as N → ∞, the sample mean of the control group

1
N ∑N

i=1 Yi,Ui=0,Di=0 → µ0. So for large enough M and N, selection bias → 0. Conceptu-
ally, this is saying that if you randomly pick out two groups of people, we would expect
the two groups to be the same in every way, including in their average YU=0. In prac-
tice when running randomized control trials, it is still considered best practice to do a
“balance check" where you compare averages of different variables (e.g. age, gender,
ethnicity, income) that you would expect to be the same across two random samples.

Difference-in-differences

Differences-in-differences (DiD) is a methodology that allows us to, under some as-
sumptions, act as if we have parallel worlds. DiD is useful to estimate the treatment
effect T when we can’t conduct an RCT for various reasons (e.g. costs or ethical con-
cerns). Suppose that starting in 2023, NH banned UPFs while MA did not and you
observe average cholesterol levels of NH residents in both 2022 (when UPFs were still
legal) and 2024 (when UPFs were no longer legal). You also observe average cholesterol
levels in MA in both 2022 and 2024. Consider the figure below:
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Notice that in this example, the cholesterol levels in NH start higher than in MA in 2022
and also end higher in 2024. Naively comparing cholesterol levels in 2024 between NH
and MA would lead you to incorrectly conclude that banning UPFs raises cholesterol
levels. Moreover, cholesterol levels in MA clearly follow a “time trend" changing be-
tween 2022 and 2024 (in this simple example we assume that nothing else is happening
in either state during this time except this ban and the time trend). Instead, we are in-
terested in comparing the change cholesterol levels between 2022 and 2024 in MA to the
change in cholesterol levels in NH between 2022 and 2024. Based on the notation from
lecture, what in this figure corresponds to αNH and αMA? What about δt,NH and δt,MA?
What do we need to assume about these variables and how they relate to one another
between MA and NH?

Inference and Confidence Intervals

In general we do not observe populations (e.g. the universe of people in the US) but
just random samples taken from these populations. This means that we will only be able
to compute statistics that summarize the data we collected. An example is the sample
average. However, often want to do more than just compute averages. One thing we
commonly want to know is whether a mean is equal to zero, for example if we want to
know if the treatment effect is zero. We typically do this using a “t-test" on a sample
mean. The basic logic is as follows:

• Suppose I assume that true mean of our data is zero.

• I can compute the t-statistic, that has a known distribution conditional on some
value of the mean. This means that I can tell what is the probability that I observe
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certain values of t.1

• If I see a value that is unlikely if the data has indeed a zero mean, this suggests
the original assumption that the mean is zero is wrong, and I can therefore reject
my original hypothesis.

The above procedure is an application of the central limit theorem. The CLT tell us
that if we have a sequence of independent and identically distributed or i.i.d. random
variables, where E[Xi] = µ and Var[Xi] = σ2 < ∞ then

√
n
(

∑n
i=1 Xi

n
− µ

)
→d N(0, σ2)

Where N(·) is the normal distribution. That is that we know the distribution of sample
averages converges to the normal distribution. And if that’s true, we know that T =

x̄−µ√
s2/n

is distributed approximately as Student-t distribution t(n − 1) where s2 is the
sample variance.
So in order to test my hypotheses that the mean is zero, I assume µ = 0. Then compute
t∗ = x̄√

s2/n
. If t∗ takes on an unlikely value given the distribution, it weighs against my

hypotheses. And in particular to make concrete how “unlikely" I compute a p-value
which is p = P(|T| ≥ t∗|µ = 0).2 Then we have rules of thumb about what “unlikely"
is. Say usually p = 0.05 which occurs when t∗ ≈ 2.

A useful rule of thumb to test significance is |x̄ ± 2 ∗
√

s2/n| > 0. This means that the
(approximate) 5% confidence interval:

[x̄ − 2 ∗
√

s2/n, x̄ + 2 ∗
√

s2/n]

does not overlap with 0.

1This distributions of the statistic encodes the sampling uncertainty surrounding it. In particular they
tell us the frequency with which we will observe a value of the statistic if we sample infinitely many times
from the population and repeat the computation of the statistic.

2The p-value therefore tells us that if we extracted infinite samples from a population with mean 0, and
computed a t-stat for each of those, we would have that only 5% of the values we computed would fall
above the value t∗. This is clearly a frequentist definition.
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