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1 Real Numbers

Definition 1.1. A field is a set F equipped with operations + and × such that

• (F,+) and (F \ {0},×) are Abelian groups.

• x(y + z) = xy + xz for all x, y, z ∈ F . (Distributivity)

Properties:

1. Additive identity is unique.

2. x · 0 = 0 (∀x ∈ F ).

3. x, y ̸= 0 ⇒ xy ̸= 0 (i.e. fields are integral domains).

Example 1.1.

1. The set N = {0, 1, 2, · · ·} of natural numbers is not a field.

2. The set Z of integers is an Abelian additive group but not a field.

3. The set Q of rationals is a field.

4. The binary field Z/2Z = {0, 1} with mod 2 operations is a field.

5. Z/4Z is not a field, e.g. 2 · 2 = 0 but 2 ̸= 0.

Definition 1.2. A field F is ordered if there exists a relation < on F (with x > y
meaning y < x, x ≤ y meaning x < y or x = y, etc) such that for all x, y, z ∈ F ,

• Exactly one of x = y, x < y, x > y holds. (Trichotomy)

• x < y and y < z implies x < z. (Transitivity)

• x < y implies x+ z < y + z. (Additivity)

• x < y and z > 0 implies xz < yz. (Multiplicativity)

We define P = {x ∈ F : x > 0}.

Properties:

1. x > y =⇒ x− y ∈ P .

1



Tristan Chaang Real Analysis Notes

2. x2 ≥ 0 for all x ∈ F .

3. x > 0 =⇒ x−1 > 0. (Hint: First prove 1 > 0.)

Definition 1.3. Let F be an ordered field.

• u ∈ F is an upper bound for a subset S ⊆ F if x ≤ u for all x ∈ S. If an upper
bound for S exists, we say S is bounded above.

• ℓ ∈ F is a lower bound for a subset S ⊆ F if x ≥ ℓ for all x ∈ S. If an upper
bound for S exists, we say S is bounded below.

• If S ⊆ F is bounded above and below, we say that it is bounded.

• u ∈ F is the maximum of S, denoted maxS, if u is an upper bound and u ∈ S.

• ℓ ∈ F is the minimum of S, denoted minS, if ℓ is a lower bound and ℓ ∈ S.

• u ∈ F is the supremum of S, denoted supS, if it is the least upper bound for S.
More precisely, we say that S has supremum

supS = min{x ∈ F : x is an upper bound for S} if it exists.

• ℓ ∈ F is the infimum of S, denoted inf S, if it is the greatest lower bound for S.
More precisely, we say that S has infimum

supS = max{x ∈ F : x is an lower bound for S} if it exists.

• By convention, inf ∅ = ∞ and sup∅ = −∞. If S is unbounded above (below)
we say supS = ∞ (inf S = −∞).

• We say that F is complete if it satisfies the completeness axiom: Every nonempty
subset of F that is bounded above has a supremum.

Example 1.3.

1. {x ∈ Q : x < 1} has upper bounds but no maximum.

2. {x ∈ Q : x ≥ 1} has no upper bounds but has a minimum.

3. {x ∈ Q : x2 < 2} is bounded above but has no supremum.

Theorem 1.1. The set R of real numbers is the unique complete ordered field.

2



Tristan Chaang Real Analysis Notes

No proof. To prove this we have to prove existence and uniqueness. Two ways for existence:
via Dedekind cuts or via rational Cauchy sequences.

Example 1.4.

1. Q is ordered but not complete (see previous example).

2. [0, 1] := {x ∈ R : 0 ≤ x ≤ 1} has maximum 1.

3. (0, 1) := {x ∈ R : 0 ≤ x ≤ 1} has supremum 1 but no maximum.

Theorem 1.2. (Existence of
√
2) There exists r ∈ R with r2 = 2.

Proof. Set S = {x ∈ R : x2 < 2}. We first prove a lemma:

Lemma. If v > 0 and v2 ≥ 2, then v is an upper bound for S.

Proof. Let x ∈ S be any element. If x < 0 then x < 0 < v. If x ≥ 0, we have that
x2 < 2 ≤ v2. So 0 < v2 − x2 = (v − x)(v + x) =⇒ 0 < v − x.

Since 5 > 0 and 52 ≥ 2, S is bounded above. Therefore there is a supremum u = supS.

• If u2 > 2, set a =
u2 − 2

2u
> 0. Then u− a =

u2 + 2

2u
> 0 and

(u− a)2 = u2 − 2ua+ a2 = 2 + a2 > 2

so u− a is a lower upper bound for S than u, a contradiction.

• If u2 < 2, set a =
2− u2

5
> 0. Since 2 is an upper bound for S, we have 0 < u < 2.

Also u+ a > u and

(u+ a)2 = u2 + 2ua+ a2 < 2 + 4a+ a = 2

so u+ a > u is in S, a contradiction.

Therefore, by trichotomy, u2 = 2. ■

Theorem 1.3. (Archimedean Property) Let x, y be reals. Then

A) y > 0 =⇒ ∃ n ∈ N such that ny > x.

B) x < y =⇒ ∃ q ∈ Q such that x < q < y. (Q is dense in R)

Proof.
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A) We show that S = {ny : n ∈ N} has no upper bound. Assume not, then z = supS
exists. Since z − y < z is not an upper bound for S, there exists z − y < ny ∈ S. But
then z < (n+ 1)y ∈ S, contradicting the fact that z is an upper bound for S.

B) Pick n ∈ N∗ such that n(y − x) > 1 using part A. Another useful lemma:

Lemma. For every x ∈ R there exists n ∈ Z such that n− 1 ≤ x < n.

Proof. By part A applied to x and −x, we can find two integers a, b ∈ Z such
that a < x < b. Since {n ∈ Z : x < n ≤ b} ⊆ {n ∈ Z : a ≤ n ≤ b} is finite, there
exists a minimum n ∈ Z such that x < n. This gives n− 1 ≤ x < n.

With m− 1 ≤ nx < m (m ∈ Z), we get nx < m ≤ nx+ 1 < ny =⇒ x <
m

n
< y. ■

Theorem 1.4. (Principle of Induction) For a property P (n) (n ∈ N), if P (0) and
P (n) =⇒ P (n+ 1) (n ∈ N) are true, then P (n) is true for all n ∈ N.

Proof. Assume for contradiction that there exists some k ∈ N such that P (k) is false. Then

{n ∈ N : P (n) is false and n ≤ k}

is a non-empty finite set. Hence it has a minimum element m. Then m > 0 (P (0) is true),
and thus m− 1 ∈ N and P (m− 1) is true. But P (m− 1) =⇒ P (m), a contradiction. ■

Exercise. Prove that (1 + x)n ≥ 1 + nx for all x ≥ −1 and n ∈ N.
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2 Sequences

Definition 2.1. The absolute value function is defined by

|x| =
{

x, if x ≥ 0
−x, if x < 0

Theorem 2.1. (Triangle Inequality) |x+ y| ≤ |x|+ |y| for all x, y ∈ R.

Proof.

• If x, y ≥ 0, then x+ y ≥ 0, so |x+ y| = x+ y = |x|+ |y|.

• If x, y < 0, then x+ y < 0, so |x+ y| = −x− y = (−x) + (−y) = |x|+ |y|.

• If x < 0 ≤ y, then |x|+ |y| = −x+ y. Note that −x+ y ≥ −x− y and −x+ y ≥ x+ y
are both true, so |x|+ |y| ≥ |x+ y| regardless. The case y < 0 ≤ x is analogous. ■

Definition 2.2. A sequence {xn}n∈N = {x0, x1, · · ·} is an ordered list of real numbers.
Explicitly, we have a function x : N → R and we denoted xn = x(n).

Example 2.1. The following are sequences:

1. xn = n2 for n ∈ N.

2. xn = 1/n for n ∈ N∗ (here the sequence is {xn}n≥1).

3. (Arithmetic progression) {xn}n∈N satisfying

{
xn = xn−1 + a, n ≥ 1
x0 = b

Definition 2.3. Let {xn}n∈N is said to converge to ℓ ∈ R if

(∀ε > 0) (∃N ∈ N) (∀n ≥ N) (|xn − ℓ| < ε)

If this is true, we write lim
n→∞

xn = ℓ.

Example 2.2. lim
n→∞

1

n
= 0.

Proof. Let ε > 0 be arbitrary. Pick N > 1/ε (Archimedean Property). For all n ≥ N ,∣∣∣∣ 1n − 0

∣∣∣∣ = 1

n
≤ 1

N
< ε. ■
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Theorem 2.2. If a sequence {xn}n∈N converges to both ℓ and ℓ′, then ℓ = ℓ′.

Proof. Given ε > 0,

• ∃N1 ∈ N such that |xn − ℓ| < ε/2 for all n ≥ N1.

• ∃N2 ∈ N such that |xn − ℓ′| < ε/2 for all n ≥ N2.

Then for any n ≥ max {N1, N2},

|ℓ− ℓ′| ≤ |ℓ− xn|+ |xn − ℓ′| < ε

2
+

ε

2
= ε. ■

Exercise. If lim
n→∞

xn = ℓ and c ∈ R, then lim
n→∞

cxn = cℓ and lim
n→∞

(xn + c) = ℓ+ c.

Definition 2.4. {xn}n∈N is bounded if ∃M ∈ R such that |xn| < M for all n ∈ N.

Exercise. A converging sequence is bounded.

Theorem 2.3. If lim
n→∞

xn = ℓ and lim
n→∞

yn = ℓ′, then

• lim
n→∞

(xn + yn) = ℓ+ ℓ′

• lim
n→∞

(xnyn) = ℓℓ′

• if ℓ ̸= 0 and xn ̸= 0 for all n ∈ N, lim
n→∞

(xn + yn) = 1/ℓ

Proof of Second Point. Let L = max(|ℓ|, |ℓ′|). Given ε > 0, there exists N such that

|xn − ℓ| < min
( ε

3L
,L
)

and |yn − ℓ′| < min
( ε

3L
,L
)

for all n ≥ N . Then, for all n ≥ N ,

|xnyn − ℓℓ′| = |(xn − ℓ) (yn − ℓ′) + ℓ (yn − ℓ′) + ℓ′ (xn − ℓ)|
≤ |(xn − ℓ) (yn − ℓ′)|+ |ℓ| |yn − ℓ′|+ |ℓ′| |xn − ℓ|

<
ε

3L
· L+ L · ε

3L
+ L · ε

3L
= ε. ■

Definition 2.5. {xn}n∈N is said to diverge to ∞, written as xn → ∞, if for all M ∈ R
there exists N ∈ N such that xn ≥ M for all n ≥ N . The case xn → −∞ is analogous.
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Exercise. If xn ≤ yn for all n ∈ N, then lim
n→∞

xn ≤ lim
n→∞

yn if both limits exist.

Theorem 2.4. (Squeeze Theorem) If lim
n→∞

xn = lim
n→∞

yn = ℓ and xn ≤ zn ≤ yn for

all n ∈ N, then lim
n→∞

zn = ℓ.

Proof. Since lim
n→∞

xn = lim
n→∞

yn = ℓ, for all ε > 0 there exists N ∈ N such that

|xn − ℓ| < ε and |yn − ℓ′| < ε

for all n ≥ N . Therefore for n ≥ N ,

ℓ− ε < xn ≤ zn ≤ yn < ℓ+ ε =⇒ |zn − ℓ| < ε. ■

Exercise. lim
n→∞

sinn

n
= 0.

Definition 2.6. {xn}n∈N is monotone if it is either nonincreasing (xn ≥ xn+1 for all
n ∈ N) or nondecreasing (xn ≤ xn+1 for all n ∈ N)

Theorem 2.5. (Monotone Convergence Theorem) If {xn}n∈N is nondecreasing
and bounded above, then it converges. Similarly, if it is nonincreasing and bounded
below, then it converges.

Proof. Since {xn}n∈N is bounded above, {xn : n ∈ N} has an upper bound, with a supremum
ℓ. Then for any ε > 0, there exists some xN > ℓ− ε, which means, for all n ≥ N ,

ℓ− ε < xN ≤ xn ≤ ℓ =⇒ |xn − ℓ| < ε. ■

Worked Example. The sequence defined by

{
x0 =

√
2

xn+1 =
√
2 + xn n ≥ 0

converges.

Proof. We first prove by induction that xn ≤ xn+1 ≤ 2 for all n ∈ N. For n = 0,

x0 =
√
2 ≤

√
2 +

√
2 = x1 ≤

√
2 +

√
4 = 2.

If xn−1 ≤ xn ≤ 2, then

xn =
√

2 + xn−1 ≤
√
2 + xn = xn+1 ≤

√
2 + 2 = 2.
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Therefore {xn}n∈N is non-decreasing and bounded above by 2. Hence it converges to some
ℓ ∈ R. Extra: How to find ℓ? If we apply the limit on both sides of xn+1 =

√
2 + xn,

lim
n→∞

xn+1 = lim
n→∞

√
2 + xn

ℓ =
√
2 + ℓ

ℓ = −1 or 2

Since all xn ≥ 0, we must have ℓ = 2. ■

Definition 2.7. A subsequence of {xn}n∈N is any ordered infinite subset. Precisely,
it is some {xnj

}j∈N where n0 < n1 < n2 < · · · are natural numbers.

Exercise. If limn→∞ xn = ℓ then every subsequence converges to ℓ.

Theorem 2.6. Every sequence {xn}n∈N admits a monotone subsequence.

Proof. For each m ∈ N say xm is a tail-major if xm ≥ xn for all n ≥ m. If {xn}n∈N has
infinitely many tail-majors, the subsequence of tail-majors is a non-increasing subsequence.
Otherwise, there are finitely many tail-majors, so eventually for each xn there always exists
some n′ > n such that xn < xn′ ; this recursively defines an increasing subsequence. ■

Theorem 2.7. (Bolzano-Weierstrass)
Every bounded sequence has a convergent subsequence.

Proof. Immediate from Theorem 2.7.

Definition 2.8. A sequence {xn}n∈N is Cauchy if

(∀ε > 0)(∃N ∈ N)(∀m,n ≥ N)(|xn − xm| < ε)

Theorem 2.8. In R, a sequence converges if and only if it is Cauchy.

Proof. (⇒) Let ε > 0. Then there exists N such that |xn − ℓ| < ε/2 for all n ≥ N . Then for
all m,n ≥ N ,

|xn − xm| ≤ |xn − ℓ|+ |xm − ℓ| < ε

2
+

ε

2
= ε.

(⇐) We perform three steps:

• {xn}n∈N is bounded: |xn − xN | ≤ 1 for all n ≥ N for some N , so

|xn| ≤ max(1 + |xN |, |x1|, · · · , |xN−1|).
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• By Bolzano-Weierstrass, let
{
xnj

}
j∈N be a subsequence of {xn}n∈N converging to ℓ.

• We prove that {xn}n∈N converges to ℓ too. For any ε > 0, there exists some N such
that |xm − xn| < ε/2 and |xnj

− ℓ| < ε/2 for all m,n, nj ≥ N . Hence for all n ≥ N ,

|xn − ℓ| ≤ |xn − xnj
|+ |xnj

− ℓ| < ε

2
+

ε

2
= ε. ■

Definition 2.9. The limit superior and limit inferior of {xn}n∈N are defined by

lim supxn = lim
n→∞

(
sup
k≥n

xk

)
, lim inf xn = lim

n→∞

(
inf
k≥n

xk

)
Note that limsup and liminf exists for any sequence (allowing ±∞) because supn≥N xn and
infn≥N xn are both monotone sequences.

Theorem 2.9. {xn}n∈N converges if and only if lim supxn = lim inf xn ∈ R.

Proof. (⇒) Assume xn → ℓ. Let ε > 0. There exists N ∈ N such that |xn − ℓ| < ε for all
n ≥ N . Then infk≥n xk ≥ ℓ− ε and supk≥n xk ≤ ℓ+ ε for all n ≥ N , giving

ℓ− ε ≤ lim inf xn ≤ lim supxn ≤ ℓ+ ε

for any ε > 0 and hence lim inf xn = lim supxn. (⇐) Assume lim supxn = lim inf xn = ℓ ∈ R.
Let ε > 0. There exists N ∈ N such that∣∣∣∣ infk≥n

xk − ℓ

∣∣∣∣ < ε,

∣∣∣∣sup
k≥n

xk − ℓ

∣∣∣∣ < ε

for all n ≥ N . Then for all n ≥ N ,

ℓ− ε < inf
k≥N

xk ≤ xn ≤ sup
k≥N

xk < ℓ+ ε

and hence xn → ℓ. ■
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3 Series

Definition 3.1. Given a sequence {xn}n∈N, we define the series

n∑
k=0

xk = x0 + x1 + · · ·+ xn and
∞∑
k=0

xk = lim
n→∞

n∑
k=0

xk if it converges.

Properties:

1. Linearity:
n∑

k=0

cxk = c
n∑

k=0

xk and
n∑

k=0

(xk + yk) =
n∑

k=0

xk +
n∑

k=0

yk.

2. Distributivity:
n∑

k=0

xk

n∑
k=0

yk =
n∑

k=0

xk

n∑
j=0

yj =
n∑

k=0

n∑
j=0

xkyj.

Cauchy Revisited.
n∑

k=0

xk is Cauchy if and only if

(∀ε > 0)(∃N ∈ N)(∀n > m ≥ N)

(∣∣∣∣∣
n∑

k=m+1

xk

∣∣∣∣∣ < ε

)
.

Example 3.1.

1. Geometric Series. xk = rk where r > 0. Then
∑n

k=0 r
k = 1−rn+1

1−r
for r ̸= 1, so

• If r > 1, then rn+1 → ∞ and hence
∑n

k=0 r
k diverges.

• If r = 1, then
∑n

k=0 r
k = n+ 1 also diverges.

• If 0 < r < 1, then rn+1 → 0 and hence
∑n

k=0 r
k converges to 1

1−r
.

Exercise. If all xk ≥ 0, then
∞∑
k=0

ak converges if and only if the partial sums
n∑

k=0

ak

are bounded for all n. As a corollary, if 0 ≤ ak ≤ bk for all k ≥ N0 and
n∑

k=0

ak diverges,

then
n∑

k=0

bk diverges too.
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Theorem 3.1. (Comparison Test)

If |ak| ≤ bk for all k ≥ N0 and
∞∑
k=0

bk converges, then
∞∑
k=0

ak converges.

Proof. We prove that
∑n

k=0 ak is Cauchy. Let ε > 0. Then there exists N ∈ N such that∣∣∣∣∣
n∑

k=m+1

bk

∣∣∣∣∣ < ε for all n > m ≥ N .

Hence for all n > m ≥ N , ∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ ≤
n∑

k=m+1

|ak| ≤
n∑

k=m+1

bk < ε. ■

Definition 3.2. The series
∞∑
k=0

ak converges absolutely if
∞∑
k=0

|ak| converges.

By the Comparison Test, if a series converges absolutely then it converges too.

Theorem 3.2. (Alternating Series Test)

If xk ≥ 0 is non-increasing and xk → 0, then
∞∑
k=0

(−1)kxk converges.

Proof. Let Sn =
n∑

k=0

(−1)kxk. Observe

• S2n+2 = S2n − x2n+1 + x2n+2 ≤ S2n

• S2n+1 = S2n−1 + x2n − x2n+1 ≥ S2n−1

• S2n+1 = S2n − x2n+1 ≤ S2n

• |S2n+1 − S2n| = |x2n+1| → 0

Therefore S1 ≤ S3 ≤ S5 ≤ · · · ≤ S4 ≤ S2 ≤ S0. By the Monotone Convergence Theorem,
{S2n}n∈N and {S2n+1}n∈N both converge. By the fourth bullet point, they must converge to
the same value ℓ. Hence Sn → ℓ. ■

Example 3.2.
∞∑
k=1

(−1)k+1

k
= ln 2. (not obvious! )
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Theorem 3.3. (Ratio Test)

If all xk ̸= 0 and lim
n→∞

∣∣∣∣xk+1

xk

∣∣∣∣ < 1, then
∞∑
k=0

xk converges.

Proof. Say the limit is 0 ≤ ℓ < 1. Then there exists ℓ < β < 1 and N ∈ N such that∣∣∣∣xk+1

xk

∣∣∣∣ ≤ β for all k ≥ N . This recursively gives |xk+N | ≤ βk |xN | for all k ≥ 0. By the

Comparison Test,
∞∑
k=0

|xk+N | converges by comparing it to the geometric series
∞∑
k=0

βk |xN |

which converges. Therefore
∞∑
k=0

xk is absolutely convergent and thus convergent. ■

More General Form of the Ratio Test.

• If lim sup

∣∣∣∣xk+1

xk

∣∣∣∣ < 1, then
∞∑
k=0

xk converges.

• If lim inf

∣∣∣∣xk+1

xk

∣∣∣∣ > 1, then
∞∑
k=0

xk diverges.

Note that we cannot conclude convergence nor divergence when the limit is exactly 1.

Example 3.3.

1. lim
n→∞

∣∣∣∣1/(n+ 1)

1/n

∣∣∣∣ = 1 but
∞∑
k=1

1

k
diverges while

∞∑
k=1

(−1)k

k
converges.

Definition 3.3. The exponential function is defined as

exp(x) = ex =
∞∑
k=0

xk

k!

Exercise. Prove that
∞∑
k=0

xk

k!
converges for all x ∈ R. Hint: Ratio Test

Theorem 3.4. e := exp(1) is irrational.
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Proof. Assume not, then
m

n
=

∞∑
k=0

1

k!
for some integers m,n > 0. Then

∣∣∣∣∣m(n− 1)!−
n∑

k=0

n!

k!

∣∣∣∣∣ = n!

∣∣∣∣∣e−
n∑

k=0

1

k!

∣∣∣∣∣
= n!

(
1

(n+ 1)!
+

1

(n+ 2)!
+ · · ·

)
<

1

n+ 1
+

1

(n+ 1)2
+

1

(n+ 1)3
+ · · ·

=
1

n
≤ 1

is an integer strictly between 0 and 1, a contradiction! ■

Theorem 3.5. ex = lim
n→∞

(
1 +

x

n

)n
for all x ∈ R.

Proof. We first prove a Lemma:

Lemma.
(
1− 1

n

) (
1− 2

n

)
· · ·
(
1− k

n

)
≥ 1− k(k+1)

2n
for any positive integers k ≤ n.

Proof. Induct on k. For k = 1, equality holds. Assume it is true for some k < n, then(
1− 1

n

)
· · ·
(
1− k+1

n

)
≥
(
1− k(k+1)

2n

) (
1− k+1

n

)
= 1− (k+1)(k+2)

2n
+ k(k+1)2

2n2

≥ 1− (k+1)(k+2)
2n

.

Let ε > 0. Then pick N1 >
|x|2e|x|

ε
. For all n ≥ max (2, N1),∣∣∣∣∣

n∑
k=0

xk

k!
−
(
1 +

x

n

)n∣∣∣∣∣ =
∣∣∣∣∣

n∑
k=2

xk

k!

[
1−

(
1− 1

n

)
· · ·
(
1− k−1

n

)]∣∣∣∣∣
≤

n∑
k=2

|x|k

k!
· (k − 1)k

2n

≤ |x|2

2n
·
n−2∑
k=0

|x|k

k!
≤ |x|2e|x|

2n
<

ε

2
.

Also there exists an N2 > 2 such that for all n ≥ N2,∣∣∣∣∣ex −
n∑

k=0

xk

k!

∣∣∣∣∣ < ε

2
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Hence, for all n ≥ max (N1, N2),∣∣∣ex − (1 + x

n

)n∣∣∣ ≤ ∣∣∣∣∣ex −
n∑

k=0

xk

k!

∣∣∣∣∣+
∣∣∣∣∣

n∑
k=0

xk

k!
−
(
1 +

x

n

)n∣∣∣∣∣ < ε. ■

Theorem 3.6. (Products of Series)

If
∞∑
k=0

ak and
∞∑
k=0

bk converge absolutely, then
∞∑
k=0

(
k∑

ℓ=0

aℓbk−ℓ

)
=

∞∑
k=0

ak

∞∑
k=0

bk.

Proof.
n∑

k=0

∣∣∣∣∣
k∑

ℓ=0

aℓbk−ℓ

∣∣∣∣∣ ≤
n∑

k=0

k∑
ℓ=0

|aℓ| |bk−ℓ| ≤
n∑

k=0

|ak|
n∑

k=0

|bk| ≤
∞∑
k=0

|ak|
∞∑
k=0

|bk| converges

monotonically, so
∞∑
k=0

(
k∑

ℓ=0

aℓbk−ℓ

)
converges absolutely. Taking n → ∞ in

∣∣∣∣∣
n∑

k=0

(
k∑

ℓ=0

aℓbk−ℓ

)
−

n∑
k=0

ak

n∑
k=0

bk

∣∣∣∣∣ =
∣∣∣∣∣

2n∑
k=n+1

(
n∑

ℓ=k−n

aℓbk−ℓ

)∣∣∣∣∣
≤

2n∑
k=n+1

(
n∑

ℓ=k−n

|aℓ| |bk−ℓ|

)

≤
2n∑

k=n+1

(
k∑

ℓ=0

|aℓ| |bk−ℓ|

)

gives the desired result since
∑n

k=0

(∑k
ℓ=0 |aℓ| |bk−ℓ|

)
is Cauchy. ■

14
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Example 3.4. The assumption of absolute convergence is necessary. Consider

ak = bk =
(−1)k√
k + 1

.

Then
∑

ak and
∑

bk converge by the alternating series test, but

k∑
ℓ=0

aℓbk−ℓ = (−1)k
k∑

ℓ=0

1√
(ℓ+ 1)(k − ℓ+ 1)

does not make a convergent series since

k∑
ℓ=0

1√
(ℓ+ 1)(k − ℓ+ 1)

≥
k∑

ℓ=0

1

k + 1
= 1

so the series ‘oscillates with amplitude ≥ 1’.

Definition 3.4. A series
∞∑
k=0

xk is unconditionally convergent if any reordering of the

xk gives a series converging to the same number.

The two theorems below show that absolute convergence and unconditional convergence are
equivalent.

Theorem 3.7. (Dirichlet)

If
∞∑
k=0

xk is absolutely convergent, it is unconditionally convergent.

Proof. We first treat the case where all xk ≥ 0. Let σ : N → N be any bijection. Then

the partial sums of
∞∑
k=0

xσ(k) are bounded above by
∞∑
k=0

xk, so by the Monotone Convergence

Theorem, it converges. Now we treat the general case.

Define x+
k = max {0, xk} and x−

k = max {0,−xk}, then xk = x+
k − x−

k and |xk| = x+
k +

x−
k . From the previous case,

∞∑
k=0

x+
σ(k) and

∞∑
k=0

x−
σ(k) are unconditionally convergent, so any

rearranged sum can be written as

∞∑
k=0

xσ(k) =
∞∑
k=0

(
x+
σ(k) − x−

σ(k)

)
=

∞∑
k=0

x+
σ(k) −

∞∑
k=0

x−
σ(k). ■
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Theorem 3.7. (Riemann)

If
∞∑
k=0

xk converges but not absolutely, then for any ℓ ∈ R or ℓ = ±∞ there exists some

rearrangement σ such that
∞∑
k=0

xσ(k) = ℓ.

Proof. Again define x+
k = max {0, xk} and x−

k = max {0,−xk}. Now partition N into

P = {k ∈ N : xk ≥ 0} =
{
k ∈ N : x+

k ≥ 0, x−
k = 0

}
N = {k ∈ N : xk < 0} =

{
k ∈ N : x+

k = 0, x−
k > 0

}
Since

∞∑
k=0

xk converges but not absolutely, we have

∞∑
k=0

|xk| = ∞,
∞∑
k=0

x+
k = ∞,

∞∑
k=0

x−
k = −∞, lim

k→∞
x+
k = lim

k→∞
x−
k = 0.

So the idea is

• If ℓ ∈ R, we keep choosing indices from P (or N) until we accumulate to a number
close to ℓ, and then we alternate between P and N to get arbitrarily close to ℓ.

• If ℓ = ∞, we keep choosing indices from P , but occasionally adding a term from N so
that the series always grows more than it drops, and that we eventually can include
everything from N .

• If ℓ = −∞, swap the roles of P and N .

We leave the formalities as an exercise. ■
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4 Topology of R

Definition 4.1.

• An open interval of R is (a, b) = {x ∈ R : a < x < b} for some a, b ∈ R ∪ {±∞}.

• A closed interval of R is [a, b] = {x ∈ R : a ≤ x ≤ b} for some a, b ∈ R ∪ {±∞}.

For a given set E ⊆ R, we say that p ∈ E is

• an interior point of E if there exists a < p < b such that (a, b) ⊆ E.

• an isolated point of E if there exists a < p < b such that (a, b) ⊆ E = {p}.

• a boundary point if for all a < p < b, (a, b) intersects both E and Ec.

• a limit point (or accumulation point) if for all a < p < b, (a, b) ∩ E is infinite.

and we say E is

• open if every p ∈ E is an interior point of E.

• closed if E contains all limit points of E.

Example 4.1.

1. p is a limit point if for all a < p < b, (a, b) ∩ E ̸= {p} (this definition works for
R but not other topological spaces)

2. An interior point of E must be a limit point of E.

3. For E = [0, 1] or (0, 1), the point 0 is a limit point and boundary point, but not
an interior nor isolated point. The point 0.5 is an interior point of E.

4. Open intervals are open. Closed intervals are closed.

Definition 4.2.

• The interior of E, denoted E̊ or int(E), is the set of its interior points.

• The closure of E, denoted E, is the union of E and its limit points.

Properties:

1. (Pset) E̊ is the largest open set ⊆ E and E is the smallest closed set ⊇ E.

2. E is open if and only if Ec is closed.

17
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3. Finite intersections or arbitrary unions of open sets are open.

4. Arbitrary intersections or finite unions of closed sets are closed.

Definition 4.2.

• The interior of E, denoted E̊ or int(E), is the set of its interior points.

• The closure of E, denoted E, is the union of E and its limit points.

Tangent: Countability

Definition 4.3. A set S is countable if there exists a surjection f : N → S.

Example 4.2.

1. Finite sets and N are countable.

2. If X, Y are countable, X × Y is countable. Hence Q is countable.

3. A countable union of countable sets is countable.

Theorem 4.1. R is not countable (uncountable).

Proof. We use a trick called Cantor’s diagonalization. Suppose that there exists a surjective
f : N → (0, 1). Every number in (0, 1) has a unique decimal expansion. We write

f(0) = 0.a00a01a02a03 · · ·
f(1) = 0.a10a11a12a13 · · ·
f(2) = 0.a20a21a22a23 · · ·

...

and construct a number r that is different from f(n) at the (n + 1)-th decimal place for
all n ∈ N. We can construct this by letting the (n + 1)-th decimal place of r be ann + 1 if
ann < 9 or 0 if ann = 9. Then r does not have a preimage, contradicting surjectivity. ■

Back to Topology

Theorem 4.2. Every open set of R is a countable union of disjoint open intervals.

18
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Proof. Let E be an open set. For every x ∈ E, define

ax = inf {y ∈ E : (y, x] ⊆ E}
bx = sup {z ∈ E : [x, z) ⊆ E}
Ix = (ax, bx)

Since E is open, ax < x < bx for all x ∈ E.

Claim 1. ax, bx ̸∈ E.

Proof. If ax ∈ E, then since E is open there exists y < ax such that (y, ax] ∈ E, but then y
is a smaller lower bound of {y ∈ E : (y, x] ∈ E}, a contradiction. Similar for bx.

Claim 2. Ix = (ax, bx) ⊆ E.

Proof. Let y ∈ (ax, bx). Then there exists z ∈ (ax, y) such that (z, x] ∈ E since ax < z is the
infimum. Then y ∈ (z, x] ⊆ E. Since y was arbitrary, (ax, bx) ⊆ E.

Claim 3. If Ix ∩ Iy = ∅, then Ix = Iy.

Proof. WLOG ax ≤ ay. Since Ix, Iy overlap, we have ax ≤ ay < bx. Now if ax < ay, then
ay ∈ Ix ⊆ E but Claim 1 says ay ̸∈ E, a contradiction.

Therefore {Ix : x ∈ E} is a set of disjoint intervals whose union is E. To prove that it is
countable, simply pick a rational in each Ix. Since the Ix are disjoint, each Ix maps to a
different rational, hence embedding {Ix : x ∈ E} into a subset of Q which is countable. ■

Definition 4.4.

• An open cover U of E ⊆ R is a collection of open sets {Oα}α∈I such that such
that E ⊆

⋃
α∈I Oα.

• K ⊆ R is (covering) compact if every open cover of K admits a finite subcover.

• K ⊆ R is sequentially compact if every sequence in K admits a converging sub-
sequence in K.

Theorem 4.3. Let K ⊆ R. The following are equivalent:

1. K is compact.

2. K is sequentially compact.

3. K is closed and bounded.
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Example 4.3. [0, 1] and finite sets are compact. (0, 1) and R are not compact.

Theorem 4.4. (Cantor’s Intersection Theorem)
Let {Kn}n∈N be a sequence of nonempty compact sets in R such that K0 ⊇ K1 ⊇
K2 ⊇ · · · . Then K =

⋂
n∈N is compact and nonempty.

Proof. K ⊆ K0 is bounded. K is also closed because an arbitrary intersection of closed sets is
closed. To prove K is non-empty, pick a xn ∈ Kn for each n and use the Bolzano-Weierstrass
theorem. ■

Example 4.4. The Cantor set K is defined recursively as follows:

• K0 = [0, 1].

• Remove the middle third of each interval in Kn to get Kn+1, so

K1 =
[
0, 1

3

]
∪
[
2
3
, 1
]
, K2 =

[
0, 1

9

]
∪
[
2
9
, 1
3

]
∪
[
2
3
, 7
9

]
∪
[
8
9
, 1
]
, · · ·

• K =
⋃

n∈N Kn.

Each Kn is made up of 2n closed intervals of length 1/3n, so the ‘total length’ of Kn is
(2/3)n, which goes to 0 as n → ∞! Exercise:

• K is uncountable. (Hint: The points in C are exactly the reals in [0, 1] that can be
written with digits 0 and 2 in base 3, but be careful of things like 0.022 · · · = 0.1.)

• K is perfect (closed without isolated points) with an empty interior.
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5 Metric Spaces

Definition 5.1. A metric space (X, d) is a set X equipped with a metric d, which is
a function d : X ×X → R≥0 such that for all x, y, z ∈ X,

• d(x, y) = 0 ⇔ x = y

• d(x, y) = d(y, x) (Symmetry)

• d(x, z) ≤ d(x, y) + d(y, z) (Triangle Inequality)

Example 3.1.

1. R with d(x, y) = |x− y|. (We have been working in this metric space so far)

2. Rn with d(x,y) =
√∑n

i=1(xi − yi)2. (Euclidean metric)

3. Rn with d(x,y) = sup1≤i≤n |xi − yi|. (Uniform metric)

4. Any set X with d(x, y) = 1(x ̸= y). (Discrete metric)

5. L2 =
{
{xn}n∈N :

∑
n∈N x

2
n < ∞

}
with d(x,y) = d2(x,y) =

√∑∞
i=1(xi − yi)2.

6. L1 =
{
{xn}n∈N :

∑
n∈N |xn| < ∞

}
with d(x,y) = d1(x,y) =

∑∞
i=1 |xi − yi|.

7. L∞ =
{
{xn}n∈N : bounded

}
with d(x,y) = d∞(x,y) = sup1≤i≤n |xi − yi|.

We can generalize many definitions from the real topology to general metric spaces:

Definition 5.2.

• Convergence: (∀ε > 0) (∃N ∈ N) (∀n ≥ N) (d(xn, ℓ) < ε).

• Cauchy sequence: (∀ε > 0) (∃N ∈ N) (∀m,n ≥ N) (d(xn, xm) < ε).

• Open/Closed balls: B(x, r) = {y : d(x, y) < r}, B(x, r) = {y : d(x, y) ≤ r}.

• Open set: (∀x ∈ E) (∃r > 0) (B(x, r) ⊆ E). Closed set: Ec is open.

• Neighborhood of x ∈ X: Any open set containing x.

• Diameter of E: diam(E) = sup {d(x, y) : x, y ∈ E}. Bounded set: diam(E) < ∞.

• Limit point of E: Any neighborhood of it intersects E infinitely much.

• Isolated point of E: Exists some neighbourhood that intersects E at only itself.
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Definition 5.2 cotd.

• Closure of E: E = E ∪ {limit points of E}.

• Interior of E: E̊ = {x ∈ E : exists neighborhood of x contained in E}.

• E is dense in F if F ⊆ E. (Equivalently, all neighborhoods of all points in F
must intersect E.)

• K ⊆ X is compact if every open cover of K admits a finite subcover.

• K ⊆ X is totally bounded if (∀ε > 0) (∃x1, · · · , xn) (K ⊆ B(x1, ε) ∪ · · · ∪ B(xn, ε)).

• K ⊆ X is complete if every Cauchy sequence converges.

• K ⊆ X is separable if it has a countable dense subset.

Example 5.2.

1. (R, |• − •|) is complete and separable (Q = R).

2. (L∞, d∞) is not separable.

Proof. Consider A = {sequences of 0s and 1s} which is uncountable. Then
d∞(x, y) = 1 for all x ̸= y, so {B(x, 0.5) : x ∈ A} is an uncountable collection of
disjoint open neighborhoods. Any dense subset has to intersect each ball, hence
must be uncountable.

3. Totally bounded ⇒ bounded. The converse is not true; check discrete metric.

Exercise. In (R, |• − •|),

• Totally bounded ⇔ Bounded.

• Complete ⇔ Closed.

Exercise. In (X, d), a sequence {xn}n∈N converges to ℓ if and only if

ℓ ∈
⋂
n∈N

{xn, xn+1, · · ·}
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Theorem 5.1. Let K ⊆ R. The following are equivalent:

1. K is compact.

2. K is sequentially compact.

3. K is complete and totally bounded.

Proof. (1) ⇒ (3): Assume K is compact. Fix ε > 0. Then K ⊆ X =
⋃

x∈X B (x, ε), so there
exists a finite subcover {B (xi, ε) : 1 ≤ i ≤ n} ⊇ K. Hence K is totally bounded. Consider
a Cauchy sequence {xn}n∈N in X. Assume it does not converge. For each n ∈ N define

Un = X \ {xn, xn+1, · · ·}. By the exercise above, {Un : n ∈ N} is an open cover of K, so it
admits a finite subcover, whose union is X \ {xN , xN+1, · · ·} for some N ∈ N. Hence

{x0, x1, x2, · · ·} ⊆ K ⊆ X \ {xN , xN+1, · · ·}

which is a contradiction.

(3) ⇒ (2): Let {xn}n∈N be a sequence in K. Since K is totally bounded, write K ⊆
B (x1, 1)∪· · ·∪B (xN , 1). Then there exists a B (xi, 1) containing infinitely many elements of

{xn}n∈N, corresponding to a subsequence
{
x
(0)
n

}
n∈N

of {xn}n∈N. Repeat the same argument

with balls of radius 1/2, giving a subsequence
{
x
(1)
n

}
n∈N

of
{
x
(0)
n

}
n∈N

, and so on for radii 1/2n

for n ∈ N. Then the diagonal sequence
{
x
(n)
n

}
n∈N

is Cauchy: For all n, they will eventually

be contained in some ball of radius 1/2n. Therefore it is a converging subsequence.

(2) ⇒ (1): Let K be sequentially compact.

Lemma. K is totally bounded.

Proof. Pick ε > 0. Assume the union of any finite collection of open ε-balls does not
contain K. We generate a sequence that does not converge in K, namely a sequence
{xn}n∈N such that d(xi, xj) ≥ ε for all i ̸= j:

• Assume x0, · · · , xk are chosen such that d(xi, xj) ≥ ε for all i ̸= j. Then K has
an element that is not in B (x0, ε)∪ · · · ∪ B (xn, ε), and we pick that as xk+1.

Let I = {I0, I1, I2, · · ·} be the union, over all n ∈ N∗, of finite sets of open (1/n)-balls
that cover K. Let U be an open cover of K. We first show that there is a countable
subcover U ′: For each k ∈ N we choose, if it exists, some Ok ∈ U such that Ik ⊆ Ok. Write
U ′ = {Ok : k ∈ N}.
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Lemma. U ′ covers K.

Proof. Pick any x ∈ K, then there exists some O ∈ U that contains x. Since O is
open, there exists some neighborhood B (x, ε) ⊆ O. Pick some Ik ∈ I which is an open
ball of radius < ε/2 and contains x. Then x ∈ Ik ⊆ B (x, ε) ⊆ O, so there exists some
Ok (e.g. O) to be chosen when building U ′. Since x was arbitrary, U ′ covers K.

Hence U ′ = {O0, O1, · · ·} is a countable subcover of K. It sufficies to prove that U ′ admits
a finite subcover. Assume not, then for all k ∈ N,

k⋃
i=0

Oi ̸⊇ K =⇒ ∃xk ∈ K \
k⋃

i=0

Oi

Now, a subsequence of {xk}k∈N converges to x. So for all k ∈ N, there exists a sequence in

K \
k⋃

i=0

Oi ⊆

(
k⋃

i=0

Oi

)c

that converges to x ∈ K (a sufficiently far tail of the subsequence).

But

(
k⋃

i=0

Oi

)c

is closed, so it contains the limit point x. Since k ∈ N was arbitrary,

x ∈

(
∞⋃
i=0

Oi

)c

= Kc

which is a contradiction since x was in K. ■

Theorem 5.2. (Baire) Let (X, d) be a complete metric space and On is open and
dense in X for all n ∈ N. Then O =

⋃
n∈N On is dense in X.

Example 5.3. Enumerate the rational numbers Q = {q0, q1, · · ·} and let On =
R \ {qn}. Then

⋃
On = R \Q is dense in R (not open!).

Proof. Let U be any open subset. We want to prove that U intersects O.

• Since O1 is dense, there exists x1 ∈ O1 ∩ U . Since O1 is open, there exists a neighbor-
hood whose closure B (x1, r1) ⊆ O1 ∩ U .

• Recursively, pick xn ∈ On∩B (xn−1, rn−1), and pick some B (xn, rn) ⊆ On∩B (xn−1, rn−1)
such that 0 < rn < rn−1/2.

So we have x1, x2, · · · and r1 > 2r2 > 4r3 > · · · , so {xn}n∈N is Cauchy, so it converges to
some x ∈

⋂
n∈N B (xn, rn) which is contained in both U and O. ■
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6 Continuous Functions

Definition 6.1.

• Let (X, dX), (Y, dY ) be metric spaces. We say f : X → Y is continuous at x ∈ X
if for every xn → x we have f(xn) → f(x).

• f : X → Y is continuous if it is continuous at every x ∈ X.

Theorem 6.1. f : X → Y is continuous at x if and only if

(∀ε > 0) (∃δ > 0) (∀dX(x, y) < δ) (dY (f(x), f(y)) < ε) .

Proof. (⇒) Let xn → x and ε > 0, pick the associated δ. Then there exists some N ∈ N
such that dX(x, xn) < δ for all n ≥ N , so dY (f(x), f(xn)) < ε =⇒ f(xn) → f(x).
(⇐) Assume there is an ε > 0 such that there is no such δ. Then for each n ∈ N we pick xn

such that dX(x, xn) < 1/n and dY (f(x), f(xn)) ≥ ε. Then xn → x but f(xn) ̸→ f(x). ■

Theorem 6.2.
f : X → Y is continuous if and only if for all open sets U in Y , f−1(U) is open in X.

Proof. Say f is continuous. Take U open in Y , and any x ∈ f−1(U). Since U is open, there
exists B (f(x), ε) ⊆ U . Since f(xn) → f(x) for all xn → x, we can find a δ > 0 such that

f(B (x, δ)) ⊆ B (f(x), ε)

so B (x, δ) ⊆ f−1(U) and hence f−1(U) is open. Conversely, fix ε > 0. Then B (f(x), ε) is
open in Y and hence f−1 (B (f(x), ε)) is open in X, so there exists a neighborhood B (x, δ) ⊆
f−1 (B (f(x), ε)) and thus f(B (x, δ)) ⊆ B (f(x), ε). ■

Example 6.1. Continuous functions:

1. Isometries: f : X → Y such that dY (f(x), f(y)) = dX(x, y) for all x, y ∈ X.

2. L-Lipschitz functions: f : X → Y such that there exists L > 0 such that
dY (f(x), f(y)) ≤ LdX(x, y) for all x, y ∈ X.

3. α-Hölder functions: f : X → Y such that there exists L > 0, 0 < α < 1 such
that dY (f(x), f(y)) ≤ LdX(x, y)

α for all x, y ∈ X.

4. f(x) = |x| on R is 1-Lipschitz. f(x) =
√
x on R≥0 is 0.5-Hölder.
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Theorem 6.3. (Banach Fixed Point Theorem)
Let (X, d) be complete and f : X → X be α-Lipschitz for some 0 < α < 1 (such
functions are called contractions). Then f has a unique fixed point: f(a) = a.

Proof. Uniqueness is easy: If f(x) = x and f(y) = y then

d(x, y) = d(f(x), f(y)) ≤ αd(x, y) =⇒ x = y.

We prove existence by starting at any x0 ∈ X and considering the sequence xn = f(xn−1).

d(xn+1, xn) = d(f(xn), f(xn−1)) ≤ αd(xn, xn−1)

∴ d(xn+1, xn) ≤ αnd(x1, x0).

With this, {xn}n∈N is Cauchy (exercise), so it converges to some x. Taking n → ∞ on both
sides of xn+1 = f(xn) (allowed because Lipschitz is continuous!) gives f(x) = x. ■

Definition 6.2. f : X → Y is uniformly continuous if

(∀ε > 0) (∃δ > 0) (∀dX(x, y) < δ) (dY (f(x), f(y)) < ε) .

Remark: Here δ does not depend on x!

Example 6.2.

1. Hölder functions are uniformly continuous.

2. f(x) = x2 on R is not uniformly continuous:

Proof. Say ε = 1. For any chosen δ, we see that for x > 1/δ,∣∣∣∣f (x+
δ

2

)
− f (x)

∣∣∣∣ = δx+
δ2

4
> 1 = ε.

Theorem 6.4. If X is compact and f : X → Y is continuous, then f(X) is compact.

Proof. Let {Uα}α∈I be an open cover of f(X) ⊆ Y . Since f is continuous, {f−1 (Uα)}α∈I is
an open cover of X and hence there exists some finite subcover {f−1 (U1) , · · · , f−1 (Uk)} of
X. Then {U1, · · · , Uk} is a finite subcover of f(X). ■

Theorem 6.5. (Heine-Cantor)
If X is compact and f : X → Y is continuous, then f is uniformly continuous.

Proof. Fix ε > 0. Since f is continuous, for every x there exists δx > 0 such that
dy(f(y), f(x)) < ε/2 whenever dX(y, x) < δx. Consider the finite subcover of {B (x, δx/2) : x ∈ X}
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that covers X, say {B (xi, δxi
/2) : 1 ≤ i ≤ n}. We then define δ = min

1≤i≤n
δxi

/2.

Now take any x, y ∈ X with dX(x, y) < δ. Then there exists xi such that x ∈ B (xi, δxi
/2).

That means y ∈ B (xi, δxi
), so

dY (f(x), f(y)) ≤ dY (f(x), f(xi)) + dY (f(xi), f(y))

<
ε

2
+

ε

2
= ε. ■

Let’s now focus on functions whose image is in R.

Exercise.

1. If f, g : X → R are continuous, then f + g, fg, f ◦ g are continuous.

2. Intervals are connected : For any two disjoint open sets O1, O2 whose union is the
interval, the interval is completely contained in one of O1, O2. (Pset 7)

Theorem 6.6.
If X is compact, f : X → R is continuous, then f(X) has a maximum and minimum.

Proof. By Theorem 6.5, f(X) is compact, so it is closed and bounded (Theorem 4.3). Since
it is bounded, f(X) has a supremum and an infimum. Since it is closed, the supremum and
infimum are in f(X). ■

Theorem 6.7. (Intermediate Value Theorem)
If f : [a, b] → R is continuous and f(a) < µ < f(b), there exists c ∈ [a, b] with f(c) = µ.

Proof. Assume µ ̸∈ f([a, b]). Then f−1((−∞, µ)) ∪ f−1((µ,∞)) = f−1((−∞, µ) ∪ (µ,∞))
are two disjoint open sets whose union is [a, b], contradicting connectedness. ■

Definition 6.3.
If X is compact, we define the uniform metric on C(X) = {f : X → R continuous}:

d(f, g) = sup {|f(x)− g(x)| : x ∈ X}

Exercise. Check that (C(X), d) is a metric space.
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Definition 6.4. Let {fn : X → R}n∈N be a sequence of continuous functions.

• We say fn converges pointwise to f if fn(x) → f(x) for all x ∈ X.

• We say fn converges uniformly to f if sup
x∈X

|fn(x)− f(x)| → 0 as n → ∞.

This is equivalent to fn converging in (C(X), d), so we can write fn
d−→ f .

Example 6.3. Set X = [0, 1].

1. fn(x) = 1/n converges uniformly to 0.

2. fn(x) = xn converges pointwise to 1(x = 1) but does not converge uniformly.

Theorem 6.8. (C(X), d) is complete.

Proof. Let {fn : X → R}n∈N be Cauchy. Then for all x ∈ X, {fn(x)}n∈N is Cauchy and

hence fn converges pointwise, say to f . We now have to prove f is continuous and fn
d−→ f .

Let ε > 0. Then there exists N such that |fn(x)− fm(x)| < ε for all m,n ≥ N and x ∈ X.
Taking m → ∞ gives |fn(x)− f(x)| < ε, which is the criteria of uniform convergence. To
check that f is continuous, let ε > 0 again and fix x.

• There exists N ∈ N such that |fn(x)− f(x)| < ε/3 for all n ≥ N .

• Since fN is continuous, ∃δ > 0 such that |fN(x)− fN(y)| < ε/3 for all dX(x, y) < δ.

Therefore,

|f(x)− f(y)| ≤ |f(x)− fN(x)|+ |fN(x)− fN(y)|+ |f(y)− fN(y)|

<
ε

3
+

ε

3
+

ε

3
= ε. ■

Definition 6.5.

• A set K ⊆ C(X) is uniformly bounded if there exists an M ∈ R such that
f(x) ≤ M for all f ∈ K and x ∈ X.

• A set K ⊆ C(X) is (uniformly) equicontinuous if

(∀ε > 0) (∃δ > 0) (∀f ∈ K, dX(x, y) < δ) (dY (f(x), f(y)) < ε) .
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Theorem 6.9. (Arzelà-Ascoli)
Let X be compact. K ⊆ C(X) is relatively compact (i.e. K is compact) if and only if
it is uniformly bounded and uniformly equicontinuous.

Proof. We make three observations when X is compact:

1. A continuous f : X → R must be uniformly continuous and bounded.

2. X is separable.

Proof. Since X is totally bounded, for all n ∈ N there exists a finite set Sn of
points whose (1/n)-ball neighborhoods cover X. Then S =

⋃
n Sn is a countable

dense set: Given any open U ⊆ X, there is some B (u, 1/N) ⊆ U and some
s ∈ S2N with u ∈ B (s, 1/2N). This means s ∈ B (u, 1/N) ⊆ U .

3. K is compact if and only if K is complete and totally bounded.

Assume K is compact.

1. Proving K is uniformly bounded.

Since K is totally bounded, there exists f1, · · · , fn such that K ⊆
⋃n

i=1 B (fi, 1). By Obv 1,
each fj is bounded by some Mj. Now let M = max1≤j≤nMj+1. Hence, for any f ∈ K ⊆ K,
there exists some B (fj, 1) that contains f , so

|f(x)| ≤ |fj(x)|+ |f(x)− fj(x)| < Mj + 1 ≤ M

2. Proving K is uniformly equicontinuous.

Let ε > 0. There exists f1, · · · , fn such that K ⊆
⋃n

i=1 B (fi, ε/3). For each 1 ≤ j ≤ n,
since fj is uniformly continuous there exists δj > 0 such that |fj(x)− fj(y)| < ε/3 whenever
dX(x, y) < δj. Let δ = min1≤j≤n δj. Now take any f ∈ K ⊆ K. Then f ∈ B (fj, ε/3) for
some j. For any dX(x, y) < δ,

|f(x)− f(y)| ≤ |f(x)− fj(x)|+ |fj(x)− fj(y)|+ |fj(y)− f(y)|

<
ε

3
+

ε

3
+

ε

3
= ε.

Now we prove the other direction. We will prove K is sequentially compact, but we first
note that we just need to prove for sequences strictly in K:
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Lemma. To prove that K is sequentially compact, we just need to prove that all
sequences in K (instead of in K) has a convergent subsequence (in K automatically).

Proof. Let {yn}n∈N be any sequence in K. Then every yn is the limit of some sequence
{ynj}j∈N in K, so for every n there exists Nn such that d(ynj, yn) < 1/(n + 1) for all
j ≥ Nn. Then the diagonal sequence {ynNn}n∈N is in K, so it admits a subsequence{
ynkNnk

}
k∈N that converges to say y. We claim that {ynk

}k∈N converges to y too: Let

ε > 0. Choose N such that 1/(N + 1) < ε/2 and d(ynkNnk
, y) < ε/2 for k ≥ N . Then

d(ynk
, y) ≤ d(ynk

, ynkNnk
) + d(ynkNnk

, y) <
1

nk + 1
+

ε

2
< ε.

Hence, let {fn}n∈N ⊆ K. Since X is separable, say {xk}k∈N is dense in X.

• Given x0, we can extract a subsequence {f0j}j∈N such that f0j(x0)
j→∞−−−→ g(x0) ∈ R by

the Bolzano-Weierstrass Theorem.

• We then extract a subsequence {f1j}j∈N of {f0j}j∈N such that f1j(x1)
j→∞−−−→ g(x1) ∈ R

by the Bolzano-Weierstrass Theorem. Note that f1j(x0)
j→∞−−−→ g(x0) still.

• Repeat for x2, x3, · · · .

We then consider the diagonal sequence {fjj}j∈N. Then fjj(xk)
j→∞−−−→ g(xk) for all k. Rename

the initial sequence {fn} to be the subsequence {fjj}j∈N. We want to show that {fn} is
Cauchy.

• Since K is equicontinuous, ∃δ > 0 such that |f(x)− f(y)| < ε/3 for all dX(x, y) < δ.

• Let {B (xj, δ) : 0 ≤ j ≤ J} be a finite subcover of X. Then there exists N such that
|fn(xj)− fm(yj)| < ε/3 for all m,n ≥ N and 0 ≤ j ≤ J .

Therefore for all m,n ≥ N and x ∈ X, we have some x ∈ B (xj, δ) and so

|fn(x)− fm(x)| ≤ |fn(x)− fn(xj)|+ |fn(xj)− fm(xj)|+ |fm(xj)− fm(x)|

<
ε

3
+

ε

3
+

ε

3
= ε.

∴ d(fn, fm) = sup
x∈X

|fn(x)− fm(x)| ≤ ε.

and hence {fn}n∈N is Cauchy, so it converges to some g ∈ K. ■
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7 Derivatives

Definition 7.1.

• Let f : I → R where I ⊆ R. Then we say lim
x→x0

f(x) = ℓ if for all ε > 0, there

exists δ > 0 such that |f(x)− ℓ| < ε for all x ∈ I with 0 < |x− x0| < δ.

• Let I be an open interval. We say that f : I → R is differentiable at x0 if

lim
x→x0

f(x)− f(x0)

x− x0

= lim
δ→0

f(x0 + δ)− f(x0)

δ
∈ R

exists, in which case we denote the limit by f ′(x0), called the derivative at x0.
We say f is differentiable if f is differentiable at all points in I.

•
f(x)− f(x0)

x− x0

is called the difference quotient and represents the slope.

Exercise. lim
x→x0

f(x) = ℓ if and only if lim
n→∞

f(xn) = ℓ for any sequence xn → x0.

Example 7.1. f(x) = x2 is differentiable: lim
δ→0

(x+ δ)2 − x2

δ
= lim

δ→0
2x0 + δ = 2x.

Theorem 7.1. If f is differentiable at x0, then it is continuous at x0.

Proof. Assume we have a sequence xn → x. Then

lim
n→∞

|f(xn)− f(x)| ≤ lim
n→∞

f(xn)− f(x)

xn − x
· (xn − x)

= lim
n→∞

f(xn)− f(x)

xn − x
· lim
n→∞

(xn − x)

= f ′(x) · 0 = 0.

and hence f(xn) → f(x). ■

Properties:

1. R-linearity: (cf)′ = cf ′ for all c ∈ R.

2. Leibniz (Product) Rule: (fg)′ = f ′g + fg′.

3. Quotient Rule: If g′(x0) ̸= 0,

(
f

g

)′

=
f ′g − fg′

g2
.
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Proof of (2).

lim
δ→0

f(x0 + δ)g(x0 + δ)− f(x0)g(x0)

δ

= lim
δ→0

f(x0 + δ)− f(x0)

δ
g(x0 + δ) + f(x0)

g(x0 + δ)− g(x0)

δ
= f ′(x0)g(x0) + f(x0)g

′(x0).

Exercise. f(x) = xn (n ∈ N) =⇒ f ′(x) = nxn−1.

Theorem 7.2. (Chain Rule)
If f, g are differentiable at x0, then f ◦ g is differentiable at x0, with

(f ◦ g)′(x0) = f ′(g(x0))g
′(x0).

Proof. Take xn → x with xn ̸= x for all n. Then

lim
n→∞

f(g(xn))− f(g(x))

xn − x0

= lim
n→∞

f(g(xn))− f(g(x))

g(xn)− g(x0)
· g(xn)− g(x)

xn − x0

= f ′(g(x0))g
′(x0)

if g(xn) ̸= g(x) eventually. If g(xn) = g(x) eventually, then it evaluates to 0 anyway and
g′(x0) = 0 too. ■

Example 7.2.

1. With f = g−1, we get f ′(g(x)) = 1/g′(x).

2. Say f(x) =
√
x and g(x) = x2, then f ′(x2) = 1

2x
.

3. f(x) = |x| is not differentiable at 0: lim
δ→0−

|δ|
δ

= −1 ̸= 1 = lim
δ→0+

|δ|
δ
.

Definition 7.2.
f : Ω ⊆ Rn → Rn is said to have directional derivative at x0 ∈ Ω in direction v ∈ Rn if

Df(x0)[v] := lim
δ→0

f(x0 + δv)− f(x0)

δ

exists. We say f is differentiable at x0 if Df(x0) : Rn → Rn is a linear map.

Theorem 7.3. If f : [a, b] → R is differentiable, then the maximum of f occurs at
either a, b or a point x0 with f ′(x0) = 0. Note: Maximum exists since [a, b] is compact.
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Proof. If it does not occur at a nor b, then it occurs at an interior point x0 ∈ (a, b). Then

f ′(x0) = lim
δ→0+

f(x0 + δ)− f(x0)

δ
≤ 0

and

f ′(x0) = lim
δ→0−

f(x0 + δ)− f(x0)

δ
≥ 0

and hence f ′(x0) = 0. ■

Theorem 7.4. (Rolle’s)
If f : [a, b] → R is continuous, f is differentiable on (a, b), and f(a) = f(b), then there
exists c ∈ (a, b) with f ′(c) = 0.

Proof. If f is constant then the result is trivial. Otherwise, a maximum or minimum occurs
at the interior, and we can use Theorem 7.3. ■

Theorem 7.5. (Mean Value Theorem)
If f : [a, b] → R is continuous, f is differentiable on (a, b), then there exists c ∈ (a, b)

with f ′(c) =
f(b)− f(a)

b− a
.

Proof. Define F (x) = f(x)− f(b)− f(a)

b− a
(x− a) and apply Rolle’s Theorem. ■

Exercise.

1. If f ′ = 0 then f is constant.

2. If |f ′| ≤ L then f is L-Lipschitz. Hint: Use the Mean Value Theorem.

Theorem 7.6. (L’Hôpital’s Rule) Let f, g be differentiable on I, and let x0 ∈ I

such that f(x0) = g(x0) = 0, and g′(x) = 0 on some B (x0, ε), and lim
x→x0

f ′(x)

g′(x)
exists.

Then lim
x→x0

f(x)

g(x)
= lim

x→x0

f ′(x)

g′(x)
.

Proof. Take some x1 ∈ B (x0, ε). Consider Φ(x) = f(x1)g(x) − g(x1)f(x). By Rolle’s
Theorem, there exists some c between x0 and x1 such that Φ′(c) = f(x1)g

′(c)−g(x1)f
′(c) = 0.

Hence for all x ∈ B (x0, ε), there exists some cx between x and x0 such that
f(x)

g(x)
=

f ′(cx)

g′(cx)
.

Taking the limit x → x0 (and hence cx → x0) gives the result. ■
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Definition 7.3.

• A function f : I → R is convex if for all x1 < x2 in I and any 0 < α < 1,

f(αx1 + (1− α)x2) ≤ αf(x1) + (1− α)f(x2).

We say that f is strictly convex if the inequality is always strict.

• A function f : I → R is concave if for all x1 < x2 in I and any 0 < α < 1,

f(αx1 + (1− α)x2) ≥ αf(x1) + (1− α)f(x2).

We say that f is strictly concave if the inequality is always strict.

• Define the right and left derivative

f ′
+(x0) = lim

δ→0+

f(x0 + δ)− f(x0)

δ
, f ′

−(x0) = lim
δ→0−

f(x0 + δ)− f(x0)

δ

Exercise. If f is convex on I, then x 7→ f(x)− f(x0)

x− x0

is nondecreasing on I.

Theorem 7.7.
Say f is convex on I. Then f ′

−(x) ≤ f ′
+(x) ≤ f ′

−(y) ≤ f ′
+(y) for all x < y in I.

Proof. Firstly,
f(x0 + δ)− f(x0)

δ
is nondecreasing as δ → 0− and hence f ′

−(x0) (and similarly

f ′
+(x0)) exists for any x0 ∈ I. The result then follows from the Exercise above. ■

Corollary.

1. When f is differentiable, then f is convex if and only if f ′ is nondecreasing.

2. When f, f ′ are both differentiable, then f is convex if and only if f ′′ ≥ 0.

Theorem 7.8. If f is convex, f ′ exists except at countably many points.

Proof. Whenever f is not differentiable at x ∈ I, we have f ′
−(x) < f ′

+(x), so we can pick a
qx ∈ Q. We then have an injective map x 7→ qx on nondifferentiable points. ■

34



Tristan Chaang Real Analysis Notes

Example 7.3.

1. f(x) = |x| is convex, with f ′(x) = sgn(x) when x ̸= 0 and f ′
−(0) = −1, f ′

+(0) = 1.

2. f(x) = ex is convex because f ′′(x) = ex > 0.

Definition 7.4.

• A function f : I → R is in C1 if it is differentiable and f ′ is continuous.

• If f ′(x0) = 0, we say x0 is a critical point and f(x0) is a critical value.

• We say y ∈ R is a regular value if it is not a critical value.

• A set S ⊆ R has measure zero if for all ε > 0 there exists countably many
intervals that (i) covers S and (ii) have total combined length < ε.

Exercise.

1. A subset of a measure zero set has measure zero.

2. Every finite or countable subset has measure zero.

3. The Cantor set (uncountable!) has measure zero.

4. A countable union of measure zero sets has measure zero.
Hint: Take a covering of total length < ε/2n+1 for the n-th set.

Theorem 7.9. (Sard’s Theorem)
Let f : R → R be in C1. Then {critical values of f} ⊆ R has measure zero.

Proof. It suffices to prove that the set of critical values of f on a closed interval [a, b] has
measure zero, because to get the full set of critical values we just apply to [−n, n] for all
n ∈ N and take the countable union. WLOG we will prove for [0, 1]. Let ε > 0

Since f ′ : [0, 1] → R is continuous, it is uniformly continuous and hence there exists N ∈ N
such that |f ′(x)− f ′(y)| < ε/2 for all |x− y| < 1/N . Partition [0, 1] into Ik =

[
k
N
, k+1

N

]
for

k = 0, · · ·N − 1. For every k where Ik has a critical point xk, for alll x, y ∈ Ik we have

|f(x)− f(y)| MVT
= |f ′(c)| |x− y| = |f ′(c)− f ′(xk)| |x− y| < ε

2
· 1

N

and hence the length of f(Ik) is < ε/2N . Taking all 0 ≤ k ≤ N − 1 for which Ik has a
critical point, we get a covering with total length < ε. ■
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Example 7.4.

1. The constant function has critical points everywhere, with exactly one critical
value, and hence {critical value} has measure zero.

Theorem 7.10. Any regular value of f : [a, b] → R in C1 has a finite pre-image.

Proof. Let y0 be a regular value (f ′(y) ̸= 0 for any f(y) = y0). Then f−1({y0}) ⊆ [a, b]
is closed and hence compact. If f−1({y0}) were infinite, then it admits a sequence {xn}n∈N
converging to some x. But then f(xn) = f(x) = y0 and hence by Rolle’s there always exists
a x′

n between xn and x such that f ′(x′
n) = 0. Then 0 = f ′(x′

n) → f ′(x) ̸= 0 which is a
contradiction since f(x) = y0. ■
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8 Riemann Integral

Definition 8.1.

• A partition of [a, b] is a finite set of points σ = {a = x0 < · · · < xN = b}.

• The size |σ| of σ is max1≤i≤N |xi − xi−1|.

• A partition σ′ is a refinement of σ if σ′ ⊇ σ.

• Given a bounded f : [a, b] → R and a partition σ of [a, b],

– The upper (Riemann) sum is S(f, σ) =
N∑
i=1

(xi − xi−1) sup
x∈[xi−1,xi]

f(x).

– The lower (Riemann) sum is s(f, σ) =
N∑
i=1

(xi − xi−1) inf
x∈[xi−1,xi]

f(x).

• Given a bounded f : [a, b] → R,

– The upper (Riemann) integral is I+(f) = inf
∀σ

S(f, σ).

– The lower (Riemann) integral is I−(f) = sup
∀σ

s(f, σ).

• A bounded f : [a, b] → R is Riemann integrable if I−(f) = I+(f) :=

∫ b

a

f(x) dx.

Denote by R(a, b) the set of all Riemann integrable functions on [a, b].

• Given f : [a, b] ∈ R and I ⊆ [a, b] an interval, define osc
I
f = sup

I
f − inf

I
f .

Remark.

1. Given two partitions σ1, σ2 of [a, b], there is always a partition that is refinement
of both, e.g. σ3 = σ1 ∪ σ2.

2. s(f, σ) ≤
∑N

i=1(xi − xi−1)f (ξi) ≤ S(f, σ) for any choice ξi ∈ [xi−1, xi] for all i.

3. Exercise. If σ3 is a refinement of both σ1, σ2, then

s(f, σ1) ≤ s(f, σ3) ≤ S(f, σ3) ≤ S(f, σ2) =⇒ s(f, σ1) ≤ S(f, σ2) ∀σ1, σ2

which implies I−(f) ≤ I+(f) for any (bounded) f .
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Theorem 8.1. The following are equivalent:

1. f ∈ R(a, b).

2. (∀ε > 0) (∃σ) (S(f, σ)− s(f, σ) < ε).

3. (∀ε > 0) (∃δ > 0) (∀|σ| < δ) (S(f, σ)− s(f, σ) < ε).

4. (∀ε > 0) (∃N > 0) (∀n ≥ N) (S(f, σn)− s(f, σn) < ε) where

σn =

{
a+

k

n
(b− a) : 0 ≤ k ≤ n

}
(equipartition)

5. (∃I ∈ R) (∀ε > 0) (∃δ > 0) (∀|σ| < δ) (∀ξi ∈ [xi−1, xi]):∣∣∣∣∣
N∑
i=1

(xi − xi−1)f(ξi)− I

∣∣∣∣∣ < ε.

Proof. We just prove (2) ⇔ (3). (⇐) is trivial. (⇒)

Assume (2) is true. Let ε > 0. Then there exists some σ = {x0 < · · · < xN} with S(f, σ)−
s(f, σ) < ε. Since f is bounded, let |f(x)| ≤ M for all x.

We pick δ = ε/(2MN). Then let σ′ = {y0 < · · · < yN ′} be any partition of size < δ. Note
that any interval Yi = [yi−1, yi] is either

(A) entirely contained within some Xf(i) = [xf(i)−1, xf(i)], or

(B) contains some xj for some j. (There are at most N such intervals)

∴ S(f, σ′)− s(f, σ′) =
N ′∑
i=1

(yi − yi−1)osc
Yi

f

≤
∑
i:(A)

(yi − yi−1) osc
Xf(i)

f +
∑
i:(B)

(yi − yi−1)osc
Yi

f

=
N∑
j=1

∑
i:(A),Yi⊆Xj

(yi − yi−1)osc
Xj

f +
∑
i:(B)

(yi − yi−1)osc
Yi

f

≤
N∑
j=1

(xj − xj−1)osc
Xj

f +N(δ)(2M)

= S(f, σ)− s(f, σ) + 2MNδ ≤ 2ε. ■
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Theorem 8.2. Continuous functions are Riemann integrable.

Proof. Let f : [a, b] → R be continuous and ε > 0. Then f is uniformly continuous and
hence exists an δ > 0 such that |f(x)− f(y)| < ε for all |x− y| < δ. Then for any partition
σ of size < δ,

S(f, σ)− s(f, σ) =
N∑
i=1

(xi − xi−1) osc
[xi−1,xi]

f ≤
N∑
i=1

(xi − xi−1)ε = ε(b− a). ■

Example 8.1. The Dirichlet function φ(x) = 1(x ∈ Q) on [0, 1] is not Riemann
integrable, with I+(φ) = 1 and I−(φ) = 0.

Properties: If f, g ∈ R(a, b), then

1. f + g, λf (λ ∈ R) are in R(a, b) and
∫ b

a
f + g =

∫ b

a
f +

∫ b

a
g,

∫ b

a
λf = λ

∫ b

a
f .

2. fg,max(f, g),min(f, g) ∈ R(a, b).

3. f/g ∈ R(a, b) if inf g > 0.

4. f ≤ g =⇒
∫ b

a
f ≤

∫ b

a
g.

5. |f | ∈ R(a, b) with
∫ b

a
|f | ≥

∣∣∣∫ b

a
f
∣∣∣. (Triangle inequality)

6. If c ∈ (a, b), then f ∈ R(a, c) ∩R(c, b) with
∫ b

a
f =

∫ c

a
f +

∫ b

c
f .

Remark: We denote
∫ a

a
f = 0 and

∫ a

b
f = −

∫ b

a
f if a < b.

Theorem 8.3. (Fundamental Theorem of Calculus / FTC)
If f : [a, b] → R is continuous, then F (x) =

∫ x

a
f is differentiable with F ′ = f .

Proof. For any x ∈ (a, b) and h > 0,∣∣∣∣F (x+ h)− F (x)

h
− f(x)

∣∣∣∣ = 1

h

∣∣∣∣∫ x+h

x

f − hf(x)

∣∣∣∣
=

1

h

∣∣∣∣∫ x+h

x

(f − f(x))

∣∣∣∣
≤ 1

h

∫ x+h

x

|f − f(x)|

≤ 1

h
sup

[x,x+h]

|f − f(x)| h→0+−−−→ 0
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The case where h < 0 is similar. ■

Theorem 8.4. (Integral Form of FTC)

If F : [a, b] → R is in C1, then
∫ b

a
F ′ = F (b)− F (a).

Proof. Apply FTC to f = F ′, giving G(x) =
∫ x

a
F ′ with G′ = F ′. But (G − F )′ = 0 =⇒

G(b)− F (b) = G(a)− F (a) and thus
∫ b

a
F ′ = G(b)−G(a) = F (b)− F (a). ■

Theorem 8.5. (Integration by Parts)

If f, g : [a, b] → R are in C1, then
∫ b

a
f ′g = f(b)g(b)− f(a)g(a)−

∫ b

a
fg′.

Proof. Apply Theorem 8.4 to F = fg (with F ′ = f ′g + gf ′). ■

Theorem 8.6. (Characterization of Riemann Integrability)
f ∈ R(a, b) if and only if

• f is bounded, and

• The set of points of discontinuity of f has measure zero.

Example 8.2.

1. f : [0, 1] → R with f(x) = 1(x = 1/2) is in R(a, b) (discontinuous only at 1/2).

2. The Dirichlet function is discontinuous everywhere, so it is not in R(a, b).

Definition 8.2. The oscillation of f at point x is osc(f, x) = lim
δ→0+

osc
[x−δ,x+δ]

f ≥ 0

Exercise. osc(f, x) = 0 if and only if f is continuous at x.

Proof of Theorem 8.6. (⇐) Let |f(x)| ≤ M for all x. Denote E as the set of discontinuity
points, so E has measure zero. Let ε > 0. Then

Eε =

{
x ∈ [a, b] : osc(f, x) ≥ ε

2(b− a)

}
⊆ E

has measure zero too. Also, Eε is closed (Exercise! If x ̸∈ Eε, choose δ small enough so that
the oscillation is still within ε/2(b− a), so Ec

ε is open). Therefore, Eε is compact and hence
can be covered by finitely many disjoint closed intervals of total length < ε/(4M).

We then consider a partition σ of [a, b] that contains all the closed intervals chosen above
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(type A), and the rest where the oscillations are < ε/2(b− a) (type B). Then

S(f, σ)− s(f, σ) =
N∑
i=1

(xi − xi−1) osc
[xi−1,xi]

f

=
∑
i:(A)

(xi − xi−1) osc
[xi−1,xi]

f +
∑
i:(B)

(xi − xi−1) osc
[xi−1,xi]

f

≤
∑
i:(A)

(xi − xi−1)(2M) +
∑
i:(B)

(xi − xi−1)
ε

2(b− a)

<
ε

4M
(2M) + (b− a)

ε

2(b− a)
= ε.

(⇒) f is bounded by definition, so we just need to prove that the set of discontinuity points
has measure zero. We will prove that

Eδ = {x ∈ [a, b] : osc(f, x) ≥ δ}

has measure zero. The result then follows from a union of δ = 1/n for n ∈ N∗. Take any
partition σ of [a, b], then

S(f, σ)− s(f, σ) =
N∑
i=1

(xi − xi−1) osc
[xi−1,xi]

f

=
∑

[xi−1,xi]∩Eδ=∅

(xi − xi−1) osc
[xi−1,xi]

f +
∑

[xi−1,xi]∩Eδ ̸=∅

(xi − xi−1) osc
[xi−1,xi]

f

≥
∑

[xi−1,xi]∩Eδ ̸=∅

(xi − xi−1) osc
[xi−1,xi]

f

≥ δ
∑

[xi−1,xi]∩Eδ ̸=∅

(xi − xi−1) ≥ δ |Eδ|

But for any ε > 0 we can force S(f, σ)− s(f, σ) < ε for some σ, so |Eδ| = 0. ■

Definition 8.3. An ordinary differential equation (ODE) is a problem in the form

y′(x) = f(x, y(x)), y(x0) = y0

where y(x) is a differentiable function from R → Rn to be solved.

Example 8.3.

1. Newton’s Law of Cooling: θ′(t) = κ · (T − θ(t)).

2. Newton’s 2nd Law: mx′′(t) = F (x(t)) ⇔ d

dt

(
x(t)

v(t)

)
=

(
v(t)

F (x(t))/m

)
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We show that most ODEs have a unique solution.

Theorem 8.7. (Picard-Lindelöf/Cauchy-Lipschitz)
Let D ⊆ R2 be open and (x0, y0) ∈ D. Let f : D → R be L-Lipschitz in the second
variable (namely |f(x, y1)− f(x, y2)| ≤ L |y1 − y2|). Then for some ε > 0 there exists
a unique solution y : (x0 − ε, x0 + ε) → R to the ODE

y′(x) = f(x, y(x)), y(x0) = y0.

Remark.

1. The theorem is true for higher dimensions too, i.e. f : D ⊆ R× Rn → Rn.

2. While the proof is for local existence and uniqueness, it can be extended globally :
There always exists a maximal interval Imax containing x0 where y(x) exists and
is unique. Sketch: Keep expanding (x0 − ε, x0 + ε) by repeatedly applying this
theorem to the boundaries when possible.

3. The L-Lipschitz condition of f is necessary. Consider the ODE y′(x) =
3y2/3, y(0) = 0. Then y = x3 and y = 0 are solutions. (In fact, there are
infinitely many solutions! Can you find them? Note that scaling doesn’t work.)

Proof. By FTC, the differential equation is equivalent to the integral equation

y(x) = y0 +

∫ x

0

f(t, y(t))dt

so for any I = (x0 − ε, x0 + ε) let’s define the functional L : C(I) → C(I) with

[L(y)] (x) = y0 +

∫ x

0

f(t, y(t))dt

and use the Banach Fixed Point Theorem.

d(L(y1),L(y2)) = sup
x∈I

∣∣∣∣∫ x

x0

(f(t, y1(t))− f(t, y2(t))) dt

∣∣∣∣
≤ sup

x∈I

∣∣∣∣∫ x

x0

|f(t, y1(t))− f(t, y2(t))| dt
∣∣∣∣

≤ L sup
x∈I

∣∣∣∣∫ x

x0

|y1(t)− y2(t)| dt
∣∣∣∣ (Lipschitz)

≤ L sup
x∈I

∣∣∣∣∫ x

x0

sup
z∈I

|y1(z)− y2(z)| dt
∣∣∣∣

≤ L|I| sup
z∈I

|y1(z)− y2(z)| = L|I|d(y1, y2)

so L is a contraction if we choose |I| < 1/L, i.e. ε < 1/(2L). ■
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Definition 8.4.

• Let {ak}k∈N be a sequence and c ∈ R. A power series is a series in x of the form

∞∑
k=0

ak(x− c)k.

For each x ∈ R for which the series converges we get a function f(x).

• The radius of convergence of a power series
∑∞

k=0 ak(x− c)k is

R =
1

lim sup
k→∞

|ak|1/k
∈ R≥0 ∪ {∞} .

Example 8.4.

1. ex =
∞∑
k=0

xk

k!
converges for all x, and its radius of convergence is ∞.

2. Geometric series
∞∑
k=0

xk converges for all |x| < 1. Its radius of convergence is 1.

Theorem 8.8.

• If R = 0, the series converges only at x = c.

• If R = ∞, the series converges absolutely for all x ∈ R.

• If 0 < R < ∞, the series converges absolutely for |x − c| < R and does not
converge for |x− c| > R.

We use a different variant of Theorem 3.3 (Ratio Test), called the Root Test:

Root Test. If lim sup
k→∞

|ak|1/k < 1, then
∞∑
k=0

ak converges absolutely.

Proof of Theorem 8.8. Apply the Root Test to ak(x− c)k:

lim sup
k→∞

|ak|1/k |x− c| = |x− c|
R

. ■

Let’s focus on the c = 0 case.
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Theorem 8.9.

Let f(x) =
∞∑
k=0

akx
k be a power series and let |x| < R. Then the partial sums fn =

n∑
k=0

akx
k converge uniformly to f on any compact interval [a, b] ⊆ (−R,R).

Proof.

sup
x∈[a,b]

|f(x)− fn(x)| =

∣∣∣∣∣
∞∑

k=n+1

akx
k

∣∣∣∣∣ ≤
∞∑

k=n+1

|ak| |x|k ≤
∞∑

k=n+1

|ak| rk

where r = max
x∈[a,b]

|x| < R. But
∞∑
k=0

|ak|rk converges so the above → 0. ■

Theorem 8.10.

Given f(x) =
∞∑
k=0

akx
k on (−R,R) we have that f is differentiable on (−R,R) with

f ′(x) =
∞∑
k=0

kakx
k−1.

Proof. Let g(x) =
∞∑
k=0

kakx
k−1. Firstly, g(x) has radius of convergence R too (Exercise: Use

Root Test). Secondly, the derivatives of fn(x) =
∑∞

k=0 akx
k are f ′

n(x) =
∑∞

k=0 kakx
k−1.

Theorem 8.9 shows f ′
n → g. The following proposition finishes the proof. ■

Proposition. Let {fn}n∈N be a sequence in C1([a, b]). If fn → f pointwise and f ′
n → g

uniformly, then f ∈ C1([a, b]) and f ′ = g.

Proof.

∣∣∣∣∫ x

a

g(t) dt−
∫ x

a

f ′
n(t) dt

∣∣∣∣ ≤ |x− a| sup
[a,b]

|g − f ′
n|

n→∞−−−→ 0, thus

∫ x

a

g(t) dt = lim
n→∞

∫ x

a

f ′
n(t) dt = lim

n→∞
fn(x)− fn(a) = f(x)− f(a)

which by FTC means f ′ = g.

Example 8.5. f(x) = ex =⇒ f ′(x) = ex.
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Definition 8.5.

• A function f : I ⊆ R → R is infinitely differentiable (f ∈ C∞(I)) if the n-th
derivative f (n) exists for all n ∈ N.

• A function f : I ⊆ R → R is analytic if there exists a power series that is equal
to f(x) for all x ∈ I.

• Given a function f ∈ C∞, the associated Taylor series of f at c ∈ R is

∞∑
k=0

f (k)(c)

k!
(x− c)k

Exercise.
If f is analytic on some neighborhood of c, then f is equal to its Taylor series at c, i.e.

f(x) =
∞∑
k=0

ak(x− c)k =⇒ ak =
f (k)(c)

k!
for all k ∈ N.

Hint: Differentiate the expression n times.

Example 8.6.

The function f(x) =

{
e−1/x, x > 0
0, x ≤ 0

is infinitely differentiable but not analytic.

The following theorem allows us to approximate f locally at a point using polynomials.

Theorem 8.11.
Let f ∈ Cn((−R,R)) for some R > 0 and pn(x) be its n-th Taylor polynomial

pn(x) =
n∑

k=0

f (k)(0)

k!
xk.

Then lim
x→0

|f(x)− pn(x)|
|x|n

= 0. (We also write this as f(x) = pn(x) + o(xn).)

Theorem 8.12. (Weierstrass Approximation)
For all f ∈ C([a, b]) there exists a sequence of polynomials pn such that pn → f
uniformly. In other words, {polynomials} is dense in C([a, b]).
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