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Lecture 1: Introduction

1 Introduction

1.1 Course Information
This class is taught by Aram Harrow, and these notes are taken by Jakin Ng. The grade breakdown
is 40% weekly problem sets, 20% midterm on October 27, and 40% final. There will be office hours on
Monday/Wednesday from 2-3 and on Thursday 9:30 - 11.

Sources relevant to the class include

• Harrow’s notes

• Shor’s notes

• The book QCQI

• Preskill’s notes

This class is listed as 2.111/6.6410/8.370/18.435 and will draw from math, including probability and linear
algebra, physics, including quantum mechanics, and CS, including algorithms, discrete math, and complexity
theory.

The plan for the course will be to cover the basics of QI, algorithms, information theory, and error correction.

1.2 Introduction to Quantum Computation
In classical computing, bits are either 0 or 1, and we can use the gates AND, OR, NOT, and FANOUT to
compute all functions that we call computable. It turns out that most functions take an exponential time to
compute.

1.3 Computational Complexity
Intuitively, there are simply a lot of functions, and so most of them will take a long time to compute.

Question. How many functions are there from {0, 1}n −→ {0, 1}?

Answer. There are 22
n

possible functions, which comes from writing out the function. There are 2n inputs in
{0, 1}n, and for each input, there are 2 choices, 0 or 1, of what the function returns.

Computational complexity refers to the amount of time it takes to compute a problem, as a function of the
input size.

Example 1.1
What is the computational complexity of multiplication of n-bit numbers, say a and b? This clearly depends
on which algorithm or method one uses to compute the product! For example, using the algorithm which
is "add a to itself b times" will take a very long time. Another algorithm would be , which would be O(n2)
time.

In general, if the computation time runs in polynomial time relative to the input, we will consider this to be
quick. Most generic random functions will be exponential time, but thankfully most functions we care about
have some structure to them, and thus will be polynomial time, or tractable.

Proposition 1.2 (Church-Turing Thesis)
Changing the computational model or computer architectures used to compute an algorithm changes the
computational complexity by at most a polynomial factor. This means that "all computational models"
have essentially the same computational power, so the specific computer or computer architecture used is
not super important.

More specifically, we might ask how the computational complexity changes with each computational model –
after all, computers have changed significantly since 30 years ago. The Church-Turing thesis has survived the
following challenges:

• random-access memory vs. a tape

4



Lecture 1: Introduction

• parallelism

• reversible computing

• analog computing – theoretically, this allows you to go beyond Turing machines, but practically, due to
noise, circuitry can only support a discrete, finite set of voltages

• relativity & black holes – this changes the speed of time

• randomness – this is an open question and not actually known, but most people believe that it does not
overturn the Church-Turing thesis

The first model of computing that truly challenges the Church-Turing thesis is quantum computing.
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Lecture 2: Qubits

2 Qubits
The equivalent textbook sections are Nielsen & Chuang, 1.2 + 2.1.1 - 2.1.4.

The Church-Turing thesis survived many changes in computation, even (mostly) randomized computation. The
first model of computing that truly challenged the Church-Turing thesis was quantum computing.

In randomized computation, a bit in {0, 1} is upgraded to a probability distribution (p0, p1), with p0, p1 ≥ 0
and p0 + p1 = 1, where p0 is the probability that the bit is 0 and p1 is the probability that the bit is 1.

For n bits, we upgrade {0, 1}n to a probability distribution (p0, · · · , p2n) ∈ R2n , where $px ≥ 0 and
∑
x px = 1.

This has a probability associated to each of the 2n potential assignments of bits in {0, 1}n.

2.1 Qubits
Now, we want to abstract away from the physical substrate. Let’s apply this through quantum mechanics.
Classical mechanics is based on two perfectly distinguishable states, say a voltage level of 0 and a voltage level
of 5. A quantum 2-level system, which we call a "qubit," also has two perfectly distinguishable states. What
makes it quantum is that the state might be some superposition, or linear combination, of the two states, with
an amplitude of each state. We consider not only two possible states, but also superpositions of those two states.

Example 2.1 (Photon Polarization)
An example might be photon polarization, where it could be either vertically or horizontally polarized.
However, a superposition might be if it were diagonally polarized.

Example 2.2 (Electron Spin)
Another example would be an electron with spin 1/2, where it could either be up or down. A superposition
is harder to describe, but

Example 2.3 (Atomic Orbitals)
Atomic orbitals also are quantum, where there are 1s orbitals and 2p orbitals, which are perfectly distin-
guishable. We also have hybrid orbitals, which have an amplitude of each of the states.

We have "ket 0" and "ket 1", which we write as |0⟩ and |1⟩. In general, we would write |state⟩.

What is interesting is combining two states using superposition. We have some complex amplitude of one state,
added to some complex amplitude of the other state, which we write as

α0|0⟩+ α1|⟩ =
(
α0

α1

)
∈ C2.

In this notation,

|0⟩ =
(
1
0

)
, |1⟩ =

(
0
1

)
.

If we have n qubits, we end up with the linear combination

α000|000⟩+ α001|001⟩+ · · ·+ α111|111⟩ ∈ C2n.

In terms of dimensions, quantum computing uses exponentially large vectors. This is similar to randomized
computing, but it turns out that amplitudes are more powerful than probabilities, which we will get into.

2.2 Comparison of Models of Computation
For every model of computation, there are states and operations on these states. Let’s compare states and
operations for deterministic computing, randomized computing, and quantum computing.

• Deterministic Computation. In deterministic computation, our states are in {0, 1}n. We look at
functions f : {0, 1}n −→ {0, 1}m.

6



Lecture 2: Qubits

Example 2.4
For example, in 1-bit computing, where n = m = 1, there are only 4 possible functions. There is the
IDentity function, the NOT function, and the CONSTant 0 and 1 functions.

With multiple bits, we get to AND, OR, FAN-OUT, and so on, but there are always only finitely many
possible functions.

• Randomized Computation. In randomized computing, the system is in an unknown state, but the
distribution is known. Then we would say that the state is a probability distribution over the possible
states. The operations in randomized computing include all the deterministic operations, but also can
introduce randomness. Thus, we could say "we flip a bit with probability γ," which would represent error
or noise.

Example 2.5
For example, in a binary symmetric channel, which comes from information theory, we would transmit
a bit 0 or 1, and with probability 1− γ, the correct bit would be transmitted, and with probability γ,
the bit would be flipped to the other one.

Then, we would say that the function can be described with a matrix, where(
p0
p1

)
=

(
1− γ γ
γ 1− γ

)(
p0
p1

)
.

For γ = 0, this would represent the IDentity function, and for γ = 1, this would represent the NOT

function. In a more interesting case, for γ = 1/2, we end up with
(
1/2 1/2
1/2 1/2

)
, which produces a

completely random output (regardless if the input bit is 0 or 1, it will randomly be sent to 0 or 1),

and ends up with
(
1/2
1/2

)
.

In general, where N = 2n for n-bit strings, we want to describe a probabilistic function where we write
down for each input distribution, the output distribution. For p ∈ RN , an operation can be represented
by p −→ Sp for S an N×N matrix. Let’s suppose that x → y with probability Syx. For every possible
transition from an input x to an output y, we write down the probability as a grid of numbers S. Then,
P (output = y) =

∑
x pxSyx = (Sp)y Thus, the probabilistic function is described by matrix multiplication

using the matrix that describes each of the transition probabilities.

What are the constraints on S? For all x,
∑
y Syx = 1. Since all entries are valid probabilities, Syx ≥ 0.

Matrices obeying such constraints (every column is a valid probability distribution) are called "stochastic"
matrices, which take in a probabilistic state and return a different probabilistic state.

• Quantum Computation. For quantum states, because there are also probability distributions involved,
there are two concepts to introduce. First, we want to work out the operations which take in a quantum
state and return a quantum state, which turn out to be unitary matrices. Secondly, we also want to work
out how to "measure" quantum states and return a probabilistic state. Relating quantum states back to
observation is what makes quantum computation useful.

7



Lecture 2: Qubits

Definition 2.6
Consider a quantum state

|ψ⟩ =
(
ψ0

ψ1

)
= ψ0|0⟩+ ψ1|1⟩.

The standard measurement states that

Pr(0) = |ψ0|2 and Pr(1) = |ψ1|2.

We can take this as an axiom, which is experimentally consistent with physical observations.

In particular, the standard measurement implies that |ψ0|2 + |ψ1|2 = 1, and more generally, for |ψ⟩ ∈ Cd,
where d = 2n for n qubits, ∑

x

|ψx|2 = 1.

It turns out that in the quantum computing setting, this is basically the only constraint necessary.

Let’s compare this with the probability condition: |p0|1 + |p1|1 = 1. In the p0 −−p1 plane, the allowed
states form a line. For a "trit," with three states, there would be a triangle of allowed states, and in higher
dimensions the allowed states form the "probability simplex."

For quantum states, we can think of C2n as instead R2·2n , where we think of each complex number as
two real numbers, which makes our condition from . This ends up with a sphere of allowed quantum
states. Very importantly, spheres are round and thus rotationally invariant, but triangles/simplices are
not. In probability, there are "preferred states" at the corners, which are the deterministic states, which
are special. For quantum states, there are no preferred states. We could write states as a superposition of
many choices of two states, rather than simply 0 and 1, and our theory will work out just as well. That
is, we can change basis with no issue, and without losing physical meaning.
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Lecture 3: Operations on Qubits

3 Operations on Qubits

3.1 Review
Last time, we stated that a quantum state can be described as |ψ⟩ = ψ0|0⟩ + ψ1|1⟩, where (ψ0, ψ1) is a unit
vector. Then, the state is 0 with probability |ψ0|2 and 1 with probability |ψ1|.

Much of quantum computation is obtained by taking quantum mechanics as axiomatic. The axioms we will
take are:

• Measurement is defined as the state being x with probability |ψx|2.

• Transformations taking one state to another are linear.

• Quantum states are a unit vector in a vector space.

• The composite of two state spaces is a tensor product of the two spaces.∗

3.2 Vector Spaces and Transformations
Our goal is to study functions that transform one quantum state to another. We want to show that if we have
|ψ⟩ −→ |ψ′⟩, then we can write |ψ′⟩ = U |ψ⟩, as a matrix-vector product, where U is unitary. The fact that U
must be unitary is not shocking, as we are mapping unit vectors to unit vectors, but let’s go through it.

We want to figure out what choices of U preserve normalization. Recall that for vectors v = (v0, v1), w = (w0, w1),
we can define a Hermitian inner product

⟨v, w⟩ = v∗0w0 + v∗1w1,

where the ∗ means complex conjugate (for z = a+ bi = reiθ, z∗ = a− bi = re−iθ). Note that these brackets are
not the same as the brackets used in writing down quantum states. In general, we have

⟨v, w⟩ =
∑

v∗xwx,

and thus
⟨v, v⟩ =

∑
|vx|2 = ||v||2.

Definition 3.1
In quantum mechanics, we have the notation

|v⟩ =
(
v0
v1

)
,

which is called a ket, and
⟨v| =

(
v∗0 v∗1

)
= |v⟩† = |v⟩T∗,

which is called a bra, and is the complex conjugate transpose of the ket.

Using this notation, we can write the matrix product

⟨v||w⟩ =
(
v∗0 v∗1

)(w0

w1

)
= v∗0w0 + v∗1w1 = ⟨v, w⟩ = ⟨v|w⟩,

which turns out to be the same as the inner product. We will commonly write the inner product as ⟨v|w⟩.

Taking the basis vectors 0 =

(
1
0

)
and 1 =

(
0
1

)
, we end up with

⟨0|0⟩ = 1, ⟨0|1⟩ = 0, ⟨1|0⟩ = 0, ⟨1|1⟩ = 1.

We can also take inner products of elements of the vector space spanned by 0 and 1; for example,

⟨0|1
2
(|0⟩+ |1⟩) = 1√

2
.

∗We may or may not cover this in the future.
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We can also take
|0⟩⟨1| = |0

⊗
1| =

(
0 1
0 0

)
.

This combines two states and produces a matrix, and we will see that these matrices are "operators," in quantum
mechanics language. In general, this is called the outer product.

Definition 3.2
The outer product of v and w is

|v⟩⟨w|,

which is a matrix.

3.3 Unitaries to Computation
Now, let’s discuss operators. Recall that we took linearity of transformations as an axiom.

Guiding Question
Which linear matrices or operations preserve norm?

Let’s think about a linear operator U : ψ −→ ψ′, where |ψ| = |ψ′|.

We have ∑
x

|ψx|2 = ⟨ψ|ψ⟩,

where |ψ⟩ = ψ0|0⟩+ ψ1|1⟩. Let |ψ′⟩ = U |ψ⟩. Then we have

⟨ψ′|ψ′⟩ = |ψ′⟩†|ψ′⟩
= (U |ψ⟩)†U |ψ⟩
= ⟨ψ|U†U |ψ⟩,

and we want this to be equal to ⟨ψ|ψ⟩.

We must therefore have

⟨ψ|U†U |ψ⟩ − ⟨ψ|ψ⟩ = 0

⟨ψ|(U†U − I)|ψ⟩∗ = 0,

which implies that U†U = I.

Definition 3.3
A unitary matrix satisfies U†U = I, or U−1 = U†. Equivalently, a unitary matrix preserves norm, as we
just showed.

Let’s see some examples of unitary matrices.

Example 3.4 (Rotation)
Rotations form a large class of unitary matrices. In fact, large class of gates we perform on qubits are
rotations in a very large space.

Example 3.5 (Phase Shift)
Phase shift matrices are of the form (

eiϕ0 0
0 e−iϕ0

)
,

which turns out to be a rotation around the z-axis in a vector space we will see later.
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Guiding Question
How are unitary matrices different from randomized computation?

Recall the binary symmetric channel, which takes 1 −→ 1 and 0 −→ 0 with probability 1 − p and 0 −→ 1
and 1 −→ 0 with probability p. For a binary symmetric channel with p = 1/2, applying the binary symmetric
channel once or twice will give a completely random output.

Example 3.6 (Hadamard Gate)

Consider the matrix H = 1√
2

(
1 1
1 −1

)
. We compute H† = 1√

2

(
1 1
1 −1

)
= H and H2 = 1

2

(
2 0
0 2

)
= I,

so H is unitary. In fact, H is Hermitian.

We compute

H|0⟩ = 1√
2
|0⟩+ 1√

2
|1⟩,

so there is a probability of 1/2 to be 0 and a probability of 1/2 to be 1, with an input of 0. Also,

H|1⟩ = 1√
2
|0⟩ − 1√

2
|1⟩,

so we also have a probability of 1/2 to be 0 and a probability of 1/2 to be 1, with an input of 0. In fact,
we can look at H as an input-output table, and read off the columns. This looks the same as the binary
symmetric gate with one application of it.

However, looking at H2, we see that applying H twice to |0⟩ gives back |0⟩, and applying H twice to |1⟩
gives back |1⟩.

This is called the Hadamard gate. This looks random after one application, but is deterministic after two
applications. The Hadamard gate is one of the first gates that looks different from classical computation
models.

3.4 Interference and Information
This leads us to our last discussion of the day.

Guiding Question
What types of information can be transmitted with complex gates

Let’s start with a 0 state, which is a qubit, and send it through the Hadamard gate, and then send it through a

phase change
(
eiϕ0 0
0 e−iϕ0

)
, then send it through the Hadamard gate again.

|0⟩ H−→ |α1⟩
phase shift

eiϕ0 0
0 e−iϕ0


−−−−−−−−−−−−−−−−−−→ |α2⟩

H−→ |α3⟩.

We have
|α1⟩ =

1√
2
|0⟩+ 1√

2
|1⟩,

|α2⟩ =
eiϕ0

√
2
|0⟩+ e−iϕ0

√
2

|1⟩,

11
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and

|α3⟩ = H|α2⟩

=
eiϕ0

√
2
(
1√
2
|0⟩+ 1√

2
|1⟩) + e−iϕ0

√
2

(
1√
2
|0⟩ − 1√

2
|1⟩)

=
eiϕ0 + e−iϕ0

2
|0⟩+ eiϕ0 − e−iϕ0

2
|0⟩

= cosϕ0|0⟩+ i sinϕ0|1⟩.

Thus, for α3,
P (0) = cos2(ϕ0), P (1) = sin2(ϕ0).

If we do the same with a binary symmetric channel, this behavior of interference between the two H’s is not
exhibited.

Interference is a hallmark of quantum behavior. We will learn that this is the interference of two computational
pathways, which can be complicated evaluations of functions, will give the quantum Fourier transform. This is
the real beauty and secret behind quantum computation.
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4 Generalized Measurement

4.1 Review
Let’s do a conceptual overview of what we talked about at the end of last time: interference. Recall last time
that one difference between doing a series of stochastic matrices (random operations) and doing a series of
unitary matrices, is interference. A series of stochastic matrices, is transitioning from one state to another with
different probabilities, and summing up all the paths to get from different states will give a sum of a product
of probabilities. In this case, we are adding up nonnegative numbers, so adding more possibilities will only
increase the probability.

In the quantum setting, it’s similar in that a unitary matrix sends one state to another state that is a superposition
of basis states, with complex amplitudes, and so on. However, adding complex numbers rather than nonnegative
numbers will conceptually be very different. This can be called constructive or destructive interference, based
on whether phases cancel out or not, and if the numbers are out of phase, this is called incoherent. In physics,
adding complex numbers is called interference, and it is very relevant to wave mechanics. Thus, there will be
interference through different paths of computation.

4.2 Generalized Measurement
So far, we defined the standard measurement as an axiom, but we can use some linear algebra to talk about
a more general concept of measurement. A measurement comes from taking some quantum state, and doing
an experiment given that state; the state "collapses" to an outcome if the experiment results in that outcome.
A measurement can be described by specifying the probability of each possible outcome, although a single
experiment will only collapse the state to a specific outcome.

Definition 4.1

For the standard measurement, where |ψ⟩ =
(
ψ0

ψ1

)
= ψ0 |0⟩+ ψ1 |1⟩, the state will collapse to |0⟩ when

measured with probability |ψ0|2 and will collapse to |1⟩ with probability |ψ1|2.

Today, we will not discuss the full range of measurements, but we will move in that direction. In fact, |0⟩ and
|1⟩ are not necessarily special, and there are other forms of measurement as well.

4.2.1 Plus and Minus States

Let’s define two new states.

Definition 4.2
The quantum plus state is

|+⟩ = |0⟩+ |1⟩√
2

and the minus state is
|−⟩ = |0⟩ − |1⟩√

2
.

Example 4.3 (Measuring |+⟩ and |−⟩)
We might think that we won’t be able to measure |+⟩ and |−⟩ states, since if we keep using the standard
measurement, we will keep getting |0⟩ and |1⟩ with probability 1/2 for both the plus and minus states.
However, if we first apply a gate, the Hadamard gate from last time, we will get

H|+⟩ = 1√
2

(
|0⟩+ |1⟩√

2
+

|0⟩ − |1⟩√
2

)
= |0⟩

and
H|−⟩ = |1⟩.

This makes us think that we should do a measurement that is "apply the Hadamard gate and use the standard

13



Lecture 4: Generalized Measurement

measurement." Generally, if we start with

|ψ⟩ =
(
ψ0

ψ1

)
,

we will get

H|ψ⟩ = 1√
2

(
ψ0 + ψ1

ψ0 − ψ1

)
.

Measuring H|ψ⟩, we get

P (0) =
1

2
|ψ0 + ψ1|2.

The fact that there are different kinds of measurement that are incompatible is an example of "complementarity"
or "uncertainty." There is no measurement that dominates all other measurements completely.

4.2.2 Higher Dimensions: Qudits

Qubits are 2-level systems in C2 and qudits are d-level systems in Cd.

Definition 4.4
A qudit is a d-dimensional vector

|ψ⟩ =

 ψ0

...
ψd−1

 = ψ|0⟩+ · · ·+ ψd−1|d− 1⟩.

We use |0⟩, · · · , |d − 1⟩ as the basis vectors, and some may use |1⟩, · · · , |d⟩. There is no standard indexing. If
we have n qubits, we will be in d = 2n, since there are 2n on-off configurations for each qubit. However, we can
actually use any d, not just powers of two.

Example 4.5 (qu3its)

For example, in C3 =


ψ0

ψ1

ψ2

 : ψ0, ψ1, ψ2 ∈ C

, we can write any vector as ψ0|0⟩+ ψ1|1⟩+ ψ2|2⟩.

4.2.3 Bases

In three dimensions, and also in general, we can define a basis.∗

Definition 4.6 (Basis)
We say that {|v0⟩, |v1⟩, |v2⟩} is a basis if any vector in C3 can be written uniquely as a C-linear combination
of |v0⟩, |v1⟩, and |v2⟩.

Thus, for an n-dimensional basis, there are n degrees of freedom.

Example 4.7
Different bases for C2 include:

• |0⟩, |1⟩

• |+⟩ , |−⟩

• |±i⟩

• 17|0⟩, |1⟩

• |0⟩, |+⟩

∗Recall from linear algebra the definitions of a complex vector space, the span of vectors, linear combinations, and so on.
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In order to deal with some complications from coefficients, we should talk about orthogonal bases and orthogonal
vectors.

Definition 4.8
Two vectors v and w are orthogonal if their inner product is zero. That is, if ⟨v|w⟩ = 0.a

aThis can be seen using the cosine formula, where we see that ⟨v|w⟩ = ||v||||w|| cos θ, so if the inner product is zero, then
the angle θ between them is π/2.

Definition 4.9
We say that a set of vectors, or in particular a basis, is orthonormal if

⟨vi|vj⟩ = δij =

{
1 if i = j

0 otherwise
.

Proposition 4.10
Let |v⟩1 , · · · , |v⟩d be an orthonormal basis, and consider |ψ⟩. Then

⟨ψ|ψ⟩ =
d∑
i=1

|ai|2,

where the ai are the amplitudes of ψ in terms of the basis.

Proof. We can calculate in bra-ket notation that

⟨ψ| =
∑
i=1

da∗i ⟨vi| .

Then,

⟨ψ|ψ⟩ =
d∑
i=1

a∗i ⟨vi|
d∑
j=1

aj |vj⟩ =
d∑

i,j=1

a∗i aj ⟨vi|vj⟩ =
d∑
i=1

|ai|2.

Here the notation ∗ refers to the complex conjugate.

4.2.4 Generalized Measurement

Now, we can define a generalized measurement rule.

Proposition 4.11
We can measure in any orthonormal basis |v0⟩ , · · · , |vd−1⟩. If |ψ⟩ =

∑d−1
i=0 ai |v⟩i, then

P (i) = |ai|2,

and its post measurement state is |vi⟩ .
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5 Generalized Measurement
Today, we will cover:

• General measurements using unitaries

• Uncertainty

• Multipartite systems, tensor products, and entanglement

5.1 Measurement

Guiding Question
Given the standard measurement, how can we define measurement on an arbitrary orthonormal basis?

Consider an arbitrary orthonormal basis |v0⟩ , · · · , |vd−1⟩ ∈ Cd. Given a state |ψ⟩, which is a linear combination
of the basis vectors, we want to measure the state and figure out the amplitudes of each of the basis vectors.
By scientific hypothesis, we can use the inner product to calculate the probability of being in state i:

P [i] = |⟨vi|ψ⟩|2 ,

and in this case, we say that the post-measurement state is |vi⟩ . A measurement takes in a quantum state and
spits out a classical answer in terms of probabilities. Measuring may or may not destroy information, depending
on whether the probability is equal to 1 or less than 1.

Given ψi = ⟨i|ψ⟩, the ith component of ψ, we can decompose |ψ⟩ as

|ψ⟩ = ψ0|0⟩+ · · ·+ ψd−1|d− 1⟩.

Last time, recall that we took measurements in the |+⟩ and |−⟩ basis by applying the Hadamard gate, then
using the standard measurement. We can define an analogous measurement for general orthonormal bases.

Definition 5.1
For an orthonormal basis |v0⟩ , · · · , |vd−1⟩, let the measurement operator U =

∑d−1
i=0 |i⟩ ⟨v|i be the matrix

with |vi⟩ as the ith row.

Proposition 5.2
The measurement operator U is unitary if the basis is orthonormal.

Proof. We can check that U is unitary:

UU† =
∑
i

|i⟩ ⟨vi|
∑
j

|vj⟩ ⟨j| =
∑
i,j

|i⟩ ⟨j| ⟨vi| |vj⟩ =
∑
i

|i⟩ ⟨i| = I.∗.

We can verify that this corresponds to the same matrix that we used last time for |+⟩ and |−⟩ .

∗Here, we take in three dimensions |0⟩ =

1
0
0

 , |1⟩ =

0
1
0

 , and |2⟩ =

0
0
2
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Example 5.3
Let’s say we want to take measurements in the |+⟩ , |−⟩ basis. Last time, we said that we should do the
Hadamard gate, then measure in the standard basis. Let’s see what our new formulation gives us. Let
v0 = |+⟩ and v1 = |−⟩. In the standard basis,

|v0⟩ = |+⟩ = |0⟩+ |1⟩√
2

and
|v1⟩ = |+⟩ = |0⟩ − |1⟩√

2
.

Thus, we end up with

U =
1√
2

(
1 1
1 −1

)
= H,

which is precisely the Hadamard gate, and so taking U as we defined above matches with the Hadamard
gate from last time.

Thus, our formulation is that to take the amplitude of |ψ⟩ in a basis vi, we define the measurement operator
U =

∑
|i⟩ ⟨vi|, apply U to |ψ⟩ , and then take the standard measurement. We can take probabilities of being in

state |i⟩ by taking the norm squared of the amplitude of vector i:

P [i] = | ⟨i|U |ψ⟩ |2

=

∣∣∣∣∣∣⟨i|
∑
j

| |j⟩ ⟨U |j |ψ⟩

∣∣∣∣∣∣
2

= | ⟨vi|ψ⟩ |2.

Essentially, we take measurements by rotating into our new basis, then taking the measurement. Unfortunately,
our new measurement is with respect to the standard basis, not our arbitrary orthonormal basis. To convert
back, we can simply rotate back by multiplying by U−1, or equivalently as U is unitary, U†.

5.2 Uncertainty
Consider two different bases, {|0⟩ , |1⟩} and {|+⟩ , |−⟩}. There cannot be a definite outcome in both. Assume
we have two bases |v0⟩ , · · · , |vd−1⟩ , and |w0⟩ , · · · , |wd−1⟩ . What is the probability

P [get |wj⟩ given state |vi⟩] = | ⟨wj |vi⟩ |2?

The only case when no information is lost is when the bases are permutations of each other.

Question. What do you mean by losing information?

Answer. By losing information, suppose that someone sends a message in the v basis, and they send the ith basis
vector. The receiver measures in the w basis. That corresponds to their outcome. They won’t deterministically
get the outcome. If you didn’t measure and instead sent the vector, then there is no information lost since you
can multiply by th einverse matrix, but once you measure, then you can’t get the information back.

Example 5.4
Here are some examples of multiple bases.

Basis Polarization Spin−1/2
|0⟩ , |1⟩ vertical and horizontal up and down
|+⟩ , |−⟩ diagonal and the opposite diagonal right and left

|±i⟩ = 1√
2
(|0⟩+ |1⟩) clockwise and counterclockwise into the board and out of the board

Uncertainty means that if I know the y-direction of the spin, that obscures my knowledge of the z-direction of
the spin. This is related to position and momentum, but we will talk about this another day.
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5.3 Multiple Systems
• Deterministic. With one die, we have 6 possibilities: [6] = {1, 2, 3, 4, 5, 6}. With two dice, we have 36

possibilities, described by the set [6]×[6] = {(x, y) : x, y ∈ [6]}. In general, for n bits, there are 2n states.
The benefit of binary over unary is that the size of the possible number of states grows exponentially with
the size of the system.

• Probabilistic Computing. In one system, we have pA =

 pA(1)
...

pA(m)

 ∈ Rm. If we add a second system

pB =

pB(1)...
pB(n)

 ∈ Rn, the joint system is a vector pAB ∈ Rmn, with a probability for each pair of states.

Like in deterministic computing, we have exponential growth, but in the dimension of the vector space
containing the vectors, rather than the number of possible states. However, the joint system may have all
sorts of correlations.

In the pleasant case where the probability distributions are independent, then

Pr[a, b] = PA(a)PB(b).

The product distribution is written A vector would be written as

pAB =



pA(1)pB(1)
pA(1)pB(2)

...
pA(a)pB(b)

...pA(m)pB(n)

 ,

which can be denoted as
pAB = pA ⊗ pB ,

the tensor product of pA and pB .

Definition 5.5
The tensor product of two vectors, x⊗ y, is the vector of all products of entries of x and entries of
y.a

aWhat order should these products be listed in? It is natural for it to inherit a lexicographical order from the
underlying systems. What is important is to be consistent.

• Quantum Computing.

For example, if one qubit in C2, and two qubits are in C4, with basis |00⟩ , |01⟩ , |10⟩ , |11⟩, then in general
n qubits will be in C2n = |00 · · · 0⟩ , · · · , |11 · · · 1⟩ .

Consider two qubits, one in state |α⟩ = α0 |0⟩+ α |1⟩ and |β⟩ = β0 |0⟩+ β1 |1⟩. An "axiom" of quantum
mechanics, which is actually somewhat forced by consistency, is that the joint state of the two qubits is

|α⟩ ⊗ |β⟩ =
(
α0 |β⟩
α1 |β⟩

)
=


α0β0
α0β1
α1β0
α1β1

 =
∑

i,j∈{0,1}

αiβi |ij⟩ .†

However, for this joint state, α and β are not correlated in any interesting ways. We could simply have
considered the two separately. This is the quantum equivalent of independent probability distributions.
These states are "not entangled."

†Maybe we would want to write this as a 2-dimensional matrix, or in general an n-dimensional tensor, but we choose to write it as a long vector instead for our purposes.
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In fact, just like how some probability distributions are not independent, some qubits will be correlated,
or entangled. For example,

|ψ⟩ = |00⟩+ |11⟩√
2

̸= |α⟩ ⊗ β.

States that can be written as products are called product states, and states that cannot are called
entangled states. They are analogous to non-independent random variables, but are quantum states
with amplitudes, so behave differently from probability distributions in certain ways.

In general, most states are entangled, and product states do not account for all states in the system.
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6 Tensor Products and Entanglement
Today, we will cover:

• Tensor product

• Entanglement

• Two-qubit gates

• No-cloning theorem

• Partial measurement

6.1 Review
Recall from last time that given two quantum states |α⟩ = α0 |0⟩+ α1 |1⟩ and |β⟩ = β0 |0⟩+ β1 |1⟩, the product
state is

|α⟩ ⊗ |β⟩ = α0β0 |00⟩+ α0β1 |01⟩+ α1β0 |10⟩+ α1β1 |11⟩ .

This is the most general product state, but not all two-qubit states can be written in this form. For example,
|00⟩+|11⟩√

2
is not a product state, and we say it is entangled.

A bit of notation: we will write
|00⟩ = |0⟩ ⊗ |0⟩ , |01⟩ = |0⟩ ⊗ |1⟩ ,

and so on.

Definition 6.1
We say a two-qubit state is entangled if it cannot be written as a product state.

Example 6.2 (Product States)
Some examples of product states include:

• |0⟩ ⊗ |1⟩ = |00⟩−|01⟩√
2

• |−⟩ ⊗ |+⟩ = |00⟩+|01⟩−|10⟩−|11⟩
2

• |+i⟩ ⊗ |+i⟩ = |00⟩+i|01⟩+i|10⟩−|11⟩
2

Example 6.3 (Entangled State)
The state

|00⟩+ |01⟩+ |10⟩ − |11⟩√
2

is entangled, and can be written as

(
1 1 1 −1

)
or

(
1 1
1 −1

)
.

It cannot be written as a product state of any two qubits.

The full theory of how to think about entangled states and so on is covered in 8.371.

Question. Should we write out the amplitudes/coefficients of the product state in a matrix or a vector?

Answer. It depends on the context. In the case of determining whether a 2-qubit state is entangled or a product

state, it can be useful to write it out as a matrix. We write a 2-qubit state as
(
ψ00 ψ01

ψ10 ψ11

)
. If the 2-qubit state

is a product state, the matrix of coefficients will have rank 1, and if it is entangled, it will have rank greater than
1. This is true in general for n-qubit states.
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6.2 Tensor Products of Matrices
Entanglement is often seen as a mysterious phenomenon, where experimentalists or theorists may come up with
Bell inequality violations, and other complicated ideas. It’s common to hear about how difficult it is to do
an experiment with entanglement, and it requires a lot of work. However, this may seem in tension with the
fact that most states are entangled, since most matrices are full rank. For example, n qubits has 2n degrees of
freedom, as there it is a superposition of 2n basis vectors∗, but |α1⟩ ⊗ · · · ⊗ |αn⟩ has only 2n degrees of freedom,
since there are 2 degrees of freedom to choose coefficients for each |αi⟩.

Definition 6.4
The tensor product of U ⊗ V is a block matrix(

U00V U01V
U10V U11V

)
.

If U and V are 2×2, then their tensor product will be 4×4. If U =
∑
ij Uij |i⟩ ⟨j|, then

U ⊗ V =
∑
ijkℓ

UijVkℓ |i, j⟩ ⟨j, ℓ| ,

where |i, k⟩ = |i⟩ ⊗ |k⟩ .

The basic rule is arranging all the possible ways of multiplying one entry of U with one entry of V, and arranging
them in one giant matrix.

Example 6.5 (Tensor product of identity)

Let X =

(
0 1
1 0

)
be the reverse matrix. The tensor product of I ⊗ X is

(
X 0
0 X

)
=


0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

 ,

which is X’s in the shape of an I. Instead of indexing the rows and columns by 1, 2, 3, and 4, we can index
them by 00, 01, 10, and 11, which are the basis vectors for 2-qubit states.

On the other hand, X ⊗ I is
(
0 I
I 0

)
=


0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

 , which is I’s in the shape of an X. The indexes

corresponding to each column and row are 11, 01, 10, and 11. We can read off the matrix to see that
(I ⊗X) |11⟩ = |10⟩, since all the coefficients are zero except for |10⟩, which has a coefficient of 1.

We have
(U ⊗ V )(|α⟩ ⊗ |β⟩) = U |α⟩ ⊗ V |β⟩ .

We definitely want this to be true, since α and β may not be next to each other. This means that α is undergoing
U and β is undergoing V, and physically α and β should not be influencing each other. We can almost think of
the tensor product as a "comma," where we say the first part of the tensor product is acting on the first system,
and the second part of the tensor product is acting on the second system. This breaks down a little when we
think about quantum field theory, but we don’t have to think about this.

Proposition 6.6
A more general rule for tensor products is that

(A⊗B)(C ⊗D) = AC ⊗BD.

Also,
A⊗ (B ⊗ C) = (A⊗B)⊗ C.

∗For example, with 3 qubits we would have |000⟩ , |001⟩ , · · · , |111⟩.
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Again, think of the tensor product as a "comma": A and C are acting on the first system, and B and D are
acting on the second system.

Not all operations can be written as tensor products, and in this case it will cause entanglement, potentially
producing entangled states from non-entangled states.

Example 6.7 (Non-product unitary matrix)
One example of a non-product unitary matrix, which cannot be written as a tensor product, is the controlled-

not gate, CNOT = |0⟩ ⟨0| ⊗ I + |1⟩ ⟨1| ⊗ X =

(
1 0
0 0

)
⊗
(
1 0
0 1

)
=

(
0 0
0 1

)(
0 1
1 0

)
. We can write this

as

=

(
I 0
0 X

)
=


1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

 .

Thus, 00 maps to itself, 01 maps to itself, and 10 and 01 swap.

We can calculate that

CNOT (|+⟩ ⊗ |0⟩) = CNOT

(
|00⟩+ |10⟩√

2

)
=

|00⟩+ |11⟩√
2

.

Another example of a 2-qubit gate is SWAP (|α⟩ ⊗ |β⟩) = β ⊗ α.

6.3 No-Cloning Theorem
Mathematically, the tensor product is important because it is a bilinear operation: it is linear in either of its
inputs, working by linear combinations.

• (|α⟩+ |β⟩)(|γ⟩+ |δ⟩) = |α⟩ ⊗ |γ⟩+ |α⟩ ⊗ |δ⟩+ |β⟩ ⊗ |γ⟩+ |β⟩ ⊗ |δ⟩

In some sense, the tensor product is the most general bilinear map. Any other bilinear map can be expressed
by doing the tensor product, then applying a linear map.

Proposition 6.8
If f(|α⟩ , |β⟩) is bilinear, then f = T |α⟩ ⊗ |β⟩, where T is some linear operation.

This characteristic of the tensor product is because the tensor product contains all the information of ways to
combine |α⟩ and |β⟩. We will not directly use this fact a lot, but it’s nice to know the intuition for the tensor
product. The inner product is a bilinear map (or sesquilinear) map taking in two vectors and outputting a
complex number. Tnesor product is similar: a bilinear map taking in two matrices and outputting another,
larger matrix.

A very important feature of classical computing is that given information, it’s easy to make a copy of it. The
only restrictions are legal, from copyright, but in quantum computing, there are physical difficulties in copying
information.

Guiding Question
Can we build a quantum copying machine?

A quantum copying machine should be a unitary matrix, Ucopy = UC such that for any state |ψ⟩ , UC |ψ⟩⊗ |0⟩ =
ψ ⊗ ψ. This is always possible for a particular |ψ⟩, but in order to be interesting, we need UC to be universal,
and be able to copy any |ψ⟩.

Theorem 6.9 (No-Cloning Theorem)
There does not exist any quantum copying machine.
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Proof. We want UC to satisfy, for all |ψ⟩ ,

UC |ψ⟩ ⊗ |0⟩ = ψ ⊗ ψ.

Mathematically, this cannot hold because the left hand side is linear, while the right hand side is quadratic.
That is, taking 2 as the factor, because Uc is linear and the tensor product is bilinear,

Uc(2 |ψ⟩ ⊗ |0⟩) = 2(Uc |ψ⟩ ⊗ |0⟩) = 2(ψ ⊗ ψ) = 2ψ ⊗ ψ,

which is not the same as (2ψ) ⊗ (2ψ). Thus, this equation cannot possibly hold for all ψ. This equation can
hold for a particular ψ, but not for all ψ.

As an application of this, there is a very important useful application of quantum computing. One of the
limitations for classical cryptography is if a message is intercepted, the intended recipient as well as any
eavesdropper can make a copy of that message. The no-cloning theorem states that this can be different in the
quantum case. It’s not necessary to assume that the message is being copied by an eavesdropper, although it’s
still important to think about the eavesdropper.

6.4 Partial Measurement
Bell’s inequality comes from Bayesian probability, and we will see next time how it relates to quantum computing.
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7 Measuring Entangled States
We have stochastic matrices mapping probability distributions to probability distributions. We also have unitary
matrices mapping quantum states to quantum states. Measurement consumes a quantum state and produces a
probability distribution, while leaving a quantum state left over, after it has collapsed.

Example 7.1 (Conditional Probability)

Consider pAB =


1/2
1/6
1/6
1/6

, where the first entry is the probability of |00⟩ , and correspondingly the other

entries are for |01⟩ , |10⟩ , and |11⟩. If we only look at the first bit, we have pA(0) = 2/3 and pA(1) = 1/3.

Moreover, using conditional probability, we have pB|A=0 =

(
1/2
1/6

)
· 1
PA(0) =

(
3/4
1/4

)
, which is the conditional

probability distribution.

Now, consider the quantum analogue.

Example 7.2 (Post-Measurement States)

If we had |ψAB⟩ =


1/
√
2

i/
√
6

−1/
√
6

1√
6

 = 1√
2
|00⟩+ i√

6
|01⟩ − 1√

6
|10⟩+ 1√

6
|11⟩. After measuring A, the probability

of the first qubit being [0] is 2/3 = (1/
√
2)2 + (i/

√
6)2 = 2/3. Then, the post-measurement state, given the

outcome 0, is

|0⟩ ⊗ 1√
Pr(0)

(
1√
2
|0⟩+ i√

6
|1⟩
)

= |0⟩ ⊗

(√
3

4
|0⟩+ i

√
1

4
|1⟩

)
=

(
1/
√
2

i/
√
6

)
/
√

2/3.

We can define this in general.

Definition 7.3 (Partial Measurement)
Consider |ψ⟩ ∈ CdA ⊗ CdB := Span{|v⟩ ⊗ |w⟩ : |v⟩ ∈ CdA , |w⟩ ∈ CdB}, where we split CdAdB into two
systems A and B. Then, we can measure the A system in an orthonormal basis |v1⟩ , · · · , |vdA⟩. We define
subnormalizeda states |φi⟩B = (⟨vi| | ⊗ IdB ) |ψ⟩ .b Then, we have pA(i) = ⟨φi|φi⟩, and the post-measurement
state is

|φ⟩ ⊗ |vi⟩√
pA(i)

.c

Next, measuring the B system in |w1⟩ , · · · , |wdB ⟩ has Pr[j|i] = | ⟨wj |φi⟩ |2/pA(i).
aThe norm is ≤ 1.
bHere, |ψ⟩ is of shape dAdB×1. Also, IdB has dimension dB×dB , and ⟨vi| has shape 1×dA. Their tensor product then

has dimensions 1 · dB×dA · dB .
cWe can check that this is normalized because

∑
pA(i) = ⟨ψ|

∑
i |vi⟩ ⟨vi| ⊗ I|ψ⟩.

We have

Pr(i for A measurement, j for B measurement) = pA(i)Pr[j|i] = | ⟨wj |φi⟩ |2 = |(⟨vi| ⊗ ⟨wj |) |ψ⟩ |2.

We can check that this corresponds to our original notion if we measure the whole combination of systems.

Example 7.4
Consider |α⟩ ⊗ |β⟩. If we measure, we get

P [i, j] = |(⟨vi| ⊗ ⟨wj |)(|α⟩ ⊗ |β⟩)|2 = | ⟨vi|α⟩ |2| ⟨wj |β⟩ |2.
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We can also gain some new insights for entangled states.

Example 7.5
Let |ψ⟩ = |00⟩+|11⟩√

2
. If Alice measures in

|v0⟩ = cosα |0⟩+ eiϕ sinα |1⟩
|v1⟩ = − sinα |0⟩+ eiϕ cosα |1⟩ ,

then we have

⟨φ0| = (⟨v0| ⊗ I2) |ψ⟩

= ((cosα ⟨0|+ e−iϕ sinα ⟨1|)⊗ I)
|00⟩+ |11⟩√

2

=
cosα√

2
|0⟩+ e−iϕ sinα√

2
|1⟩ .

Then, pA(0) = ⟨φ0|φ0⟩ = 1/2. Then, the post-measurement state is |v0⟩ ⊗ (cosα |0⟩+ e−iϕ sinα |1⟩). If we
set ϕ = 0, and Bob measures in cosβ |0⟩+sinβ |1⟩ and − sinβ |0⟩+cosβ |1⟩, we can calculate the probability
to be π/2 + β.

Also, Pr(Bob gets 0|Alice gets 0) = cos2(β − α).
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8 Entangled States, Nonlocality, and EPR pairs
For measuring entangled states, a lot is analogous to measuring non-independent probability distributions.
However, "non-locality" leads to very different behavior from probability distributions. This is called Bell’s
Theorem.

8.1 Entangled States and Non-Locality
Let’s take a look at an interesting example that highlights the distinctive features of quantum computing.
"Local" refers to acting on only one qubit or system at a time.

Example 8.1 (EPR Pair)
Consider the state, called an "EPR pair" or "Bell statea,"

|Φ⟩ = |00⟩+ |11⟩√
2

.

aThis is not the only pair of states called an EPR pair or Bell state, as there are other maximally entangled states that
can be obtained.

Let’s measure in the basis

|v0⟩ = cosα |0⟩+ sinα |1⟩
|v1⟩ = − sinα |0⟩+ cosα |1⟩ .

Geometrically, |v0⟩ makes an angle of α with the |0⟩ state, and |v1⟩ makes an angle of α with the |1⟩ state.

For Alice measuring only the first bit, P (0) = P (1) = 1/2∗. We say this outcome is x ∈ {0, 1}.

We can let Bob measure in

|w0⟩ = cosβ |0⟩+ sinβ |1⟩
|v1⟩ = − sinβ |0⟩+ cosβ |1⟩ .

For Bob measuring only the second bit, P (0) = P (1) = 1/2, for y ∈ {0, 1}. However, these are only the marginal
distributions, not the joint distribution.

We can write

P (x = y) = P (00) + P (11).

We calculate

P (00) = |(⟨v0| ⊗ ⟨w0|) |Φ⟩ |2

= (cosα |0⟩+ sinα |1⟩)⊗ |(cosβ |0⟩+ sinβ |1⟩) |00⟩+ |11⟩√
2

|2

=
(cosα cosβ + sinα sinβ)2

2

=
cos2(α− β)

2
∗We calculated this last time!
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To calculate P (11), we can plug in π/2 + α and π/2 + β instead, which yields the same answer in the end, so
P (11) = cos2(α−β)

2 as well. Thus,

P (x = y) = cos2(α− β), P (x ̸= y) = sin2(α− β).

At the extremes of α, β = 0 and α = 0, β = π/2, the probabilities are 0, 1 and 1, 0.

Also, for α = β = π/4, we are measuring in the |+⟩ , |−⟩ basis. Then,

|Φ⟩ = |+⟩ ⊗ |+⟩+ |−⟩ ⊗ |−⟩√
2

.

This is unsettling because we saw "uncertainty" before: if we are certain of a measurement in the |0⟩ , |1⟩ basis,
we cannot be certain of the measurement in the |+⟩ , |−⟩ basis. However, we can have correlation in both bases
simultaneously.

8.2 Bell’s Experiment
Bell showed that there is an experiment that can confirm the theories of quantum mechanics, and distinguishes
between the behavior of random bits and qubits.

We consider the CHSH game, which is a similar experiment. Consider Alice and Bob, who share either
randomness (random bits), or one copy of |Φ⟩. These two possibilities can in fact be distinguished.

• Randomized bits. Consider a, b ∈ {0, 1} to be random bits. Alice and Bob then need to both output a
bit, x from Alice and y from Bob. Their goal is that x⊕ y = ab† Alice and Bob can win with probability
3/4, by setting x and y to be the same. For any deterministic strategy, 75% is the best possible winning
probability, which shows that probabilistic strategies cannot achieve higher.

• Entangled bits. The EPR pair allows them to beat 3/4. Depending on the inputs a, b, Alice and Bob
can choose their measurement angles, measure their states, and let x and y be their outputs. For Alice,
if a = 0, she chooses α = 0, and if a = 0, she chooses α = π/4. For Bob, if a = 0, β = π/8, and if
b = 1, β = −π/8. Now,

P [x = y] = cos2(α− β).

If the input is (0, 0), (0, 1), (1, 0), then P [x = y] = cos2(π/8). If the input is (1, 1), then P [x = y] =
cos2(3π/8) = sin2(π/8). Then cos2(π/8) ≈ 0.857. Somehow, this is better than the randomized strategy.

Rather than "shared randomness," the original paper called it "local hidden variables," which indicates that
there were correlated, hidden variables that we simply could not access. However, this rules out that random
variables that are controlled by some eavesdropper Eve. This is useful for quantum cryptography.

8.3 Classical Gates and Computing
Classical computing can be expressed through various models:

• Von Neumann: There is a computer with CPU, RAM, I/O, which is what our computers are like, but it
can be more complicated or confusing to reason about.

• Turing machine: There is a finite state machine and a tape that it moves along. The Turing machine can
compute anything that a Von Neumann machine can.

• Cellular automata: cells communicate based on their neighbors, and this is also equivalent to other models.

• Circuits: circuits use gates and wires, with AND and OR gates. They are easy to program but also easy
to reason about.

†Here ⊕ is the XOR operation, where if a, b = (1, 1) then x ̸= y; otherwise x = y.
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9 Gates, Universality, and Reversible Computing

9.1 Universality in Classical Computing
Consider these gates in the circuit model.

input bits output bits examples
1 1 I, NOT
2 1 AND, OR, XOR, NAND, NOR
1 2 FANOUT
2 2 CNOT, SWAP
3 3 CCNOT, CSWAP

What gates are reversible? How much information is created or destroyed from a particular gate? Clearly, if the
number of output bits is less than the number of input bits, the gate cannot be reversible. However, FANOUT,
which has more output bits than input bits, clearly preserves the amount of information.

In the past, these were thought of before quantum computing. By not creating or destroying any information,
they don’t produce any waste heat. In a normal computer, bits are being erased, and when they are stored in
RAM, heat is continually being dissipated. Any fluctuation from a stable configuration is driven back to the
stable configuration. However, the very niche "physics of computing" field showed that there is no lower bound
on the amount of energy that a computer needs to dissipate.

Consider the following gate.

Example 9.1 (HALF-ADDER gate)
The HALF-ADDER gate adds the two input bits. Given inputs (x, y), it has output

x + y
0 + 0 00
0 + 1 01
1 + 1 10

In binary, the output is the sum of the bits x and y.

Guiding Question
Which functions can we compute using gates and circuits?

In fact, not only can HALF-ADDER be constructed, but any function can be constructed using circuits and
gates.
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Theorem 9.2 (Universality Theorem)
Any function can be made from AND, OR, and NOT, assuming FANOUT and ERASE are free.

Proof. Consider f : {0, 1}n −→ {0, 1}m. Without loss of generality, let m = 1. We can make an input-output
table with all of the 3-bit strings and their outputs. This specifies the function f.

x1 x2 x3 f(x1, x2, x3)
0 0 0 1
0 0 1 0
0 1 0 0
...

...
...

...
1 1 1 1

Then, we have f(x) = 1 if x matches any of the rows that has 1 as its output. For example, in this case, we
would check that x = (0, 0, 0) OR (1, 1, 1) OR any of the rows that has 1 as its output.∗ Next, in order to check
if x = (0, 0, 0), for example, we can take (NOTx1) AND (NOTx2) AND (NOTx3). In general, we can take an
AND of xi if we want to check if the ith bit is 1 and NOTxi if we want to check if the ith bit is 0.

Overall, for any f , we can write

f(x) =
∨

y∈f−1(1)

n∧
i=1

{
xi if yi = 1

¬xi if yi = 0
,

which will yield f in terms of AND, OR, and NOT.†

In fact, we can do better.

Corollary 9.3
Any function can be made from OR and NOT, or AND and NOT.a

aWe might ask, "can we omit any more gates?" In fact, if we only have OR and AND, we have a class of circuits called
"monotone circuits." That is, if we flip a bit from 0 to 1, the output will never flip from 1 to 0. Actually, NAND(x, y) = ¬(x∧y)
can produce AND and NOT, so NAND suffices to compute any function.

Proof. We can write AND as x ∨ y = ¬(¬x ∧ ¬y).

9.2 Measuring Complexity in Classical Computing
However, being able to compute a function is not the end of the story.

Guiding Question
How efficiently can we compute a particular function? What is a measure of efficiency?

Some ways of measuring complexity include:

• Size: The number of gates, or "the total electricity bill"

• Depth: The number of layers, or the "wall-clock time"

• Width: The maximum number of bits used at any point, or the amount of memory needed

Often, there is a tradeoff between these different measures. Sometimes, by increasing the depth, the size can be
greatly reduced.

Up to now, we have been considering f : {0, 1}n −→ {0, 1}, which is analogous to multiplying 32-bit numbers.
However, we may want consider the asymptotic complexity of a function with inputs of any size, such as

∗Here, we think of 0 as FALSE and 1 as TRUE.
†This is O(n · 2n) elementary gates, but we are not concerned with complexity, only computability. Using a counting argument,

we can show that the best is O(2n), which can be achieved using a slightly different construction.
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"multiplication" in general. We write {0, 1}∗ =
⋃
n≥0{0, 1}n, which consists of strings of bits of any size. For

asymptotic complexity, we want to instead consider functions

f : {0, 1}∗ −→ {0, 1},

and consider how the complexity grows as the number of input bits grows.

Definition 9.4 (Big-O Notation)
A function F (n) is O(G(n)) if there exists some c, n0 such that for all n ≥ n,

F (n) ≤ cG(n).

We write F (n) is Ω(G(n)) if G is O(F (n)), and we write F (n) is Θ(G(n)) if both O and Ω are true.a

aIn math and physics, we typically write O to mean what computer scientists write as Ω, which means that F grows as
G(n). In computer science, which is the convention we adopt for this class, for F to be O(G(n)), we simply require that F is
upper bounded as G(n), and F may grow much slower than G.

Common asymptotics include O(n), O(n2), or O(2n). This notation abstracts away unnecessary constants, and
ignores the behavior when n is small.

Question. What if we use different circuits for different inputs?

Answer. Lurking in the background of this is that we might use a different circuit for 32 and 33 bit numbers, so
we need to consider the complexity of "preparing" the circuit. The way we abstract this out is by saying there is
a little Turing machine in the background that takes in a number, say 33, and prepares a circuit, say to multiply
33-bit numbers, and this Turing machine should not take too long. This is an interesting question/theory, but it
will not come up in our discussion of circuits, since this is not a complexity theory class.

Example 9.5 (Addition)
To add n-bit numbers, we need 2 HALF-ADDERs (we need two to compute the carry over bit), which has
c gates for some constant c for each digit, so adding can be roughly O(2n) = O(n) complexity in terms of
the number of gates, in this formulation. That is, the size is O(n).

Example 9.6 (Multiplication)
We can reduce multiplying n bit numbers to n addition problems, which yields a runtime of O(n2). In fact,
we can use a smarter method to get a runtime of O(n log n).

Overall, we can write nO(1), which is n to some constant, as POLY (n). At the crudest level, we would want to
distinguish between polynomial time, and exponential time, and times in between.
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10 Reversible Gates and Quantum Gates
Quantum mechanics is reversible, so we will study quantum circuits made from reversible quantum gates. To
understand these reversible quantum gates, we can first study reversible classical gates. Consider gates such as
x1, x2 7→ f(x1, x2) or x1, x2, x3 7→ f(x1, x2, x3).

Definition 10.1
A gate f : {0, 1}n −→ {0, 1}n is reversible if f−1 exists.

Example 10.2
Reversible gates include I, NOT, and CNOTa.

aRecall that CNOT (x, y) maps x to x and y to ¬y if x = 0.

To construct a quantum gate, note that ∑
x

|f(x)⟩ ⟨x|

is always stochastic, and in fact is unitary if f−1 exists (Fredkin).

Definition 10.3
The Toffoli gate, or the CCNOT gate, has 3-bit inputs and outputs. If the first two bits are both 1, it
inverts the third bit, and otherwise all the bits stay the same. That is, CCNOT (x, y, z) = (x, y, z⊕ (x∧ y),
where ⊕ is binary addition or XOR.

The truth table of the CCNOT gate is:

(x, y, z) f(x, y, z)
000 000
010 010
100 100
110 111
001 001
011 011
101 101
111 110

Claim 10.4. The NOT and CCNOT gates are universal.

Proof. We can generate AND from CCNOT by taking CCNOT (x, y, 0) = (x, y, x ∧ y), and we can generate
FANOUT from CCNOT (1, x, 0) = (1, x, x). From last time, NOT,AND, and FANOUT suffice for universality.

This does not violate the no-cloning theorem because

|0⟩ −→ |00⟩ , |1⟩ −→ |11⟩ ,

but
|+⟩ −→ |00⟩+ |11⟩√

2
̸= |+⟩ ⊗ |+⟩ .

10.1 Cleaning up garbage bits
Unfortunately, there is a lot of "trash" or "garbage" left over in this paradigm, since we keep track of a lot of
past bits.

Suppose x −→ f(x) is possible with irreversible gates. With reversible gates x −→ x, f(x), g(x), we can do
controlled maps, such as CNOT. Erasing is not trivial, and cannot be done for free, due to entropy and energy
considerations.
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Let us have a register of x, and several 0s. With reversible gates, we can first compute x −→ x, f(x), g(x), 0.
Then, taking CNOT of f(x), g(x), and 0, we will have x, f(x), g(x), f(x). Now, we can undo this transformation,
to get x, f(x). This only works with x, f(x), and g(x), and may not work with just g(x). We are not writing
the padding with zeroes.

If f is reversible, we might be able to do x 7→ x1, f(x) efficiently, but not x 7→ f(x).

If we have an algorithm to compute f(x) using AND, OR, and NOT, we can compute x, f(x) as well using
reversible gates.

10.2 NOT and CNOT are not universal
However, {NOT,CNOT} is not universal. Consider

{0, 1} −→ F2.
∗

Then, we can consider {0, 1}n −→ Fn2 , where Fn2 is a vector space. From the field perspective, NOT (x) = x+ 1.
Similarly,

CNOT

(
x
y

)
=

(
x

x+ y

)
=

(
1 0
1 1

)(
x
y

)
.

Another example is NOT2

x1x2
x3

 =

x1x2
x3

+

0
1
0

.

Thus, any sequence of NOT and CNOT is an affine transformation

x ∈ Fn2 7→ Ax+ b.

In particular, there is no way to obtain AND, since AND is the product of two bits. Using a counting argument,
there are n2 + n bits describing A and b, but there are 2n bits describing functions. That is why we need
CCNOT, as CNOT is not sufficient.

The reason CCNOT does not have the same limitation is because CCNOT takes (x, y, z) 7→ (x, y, z + xy), and
so we can obtain polynomials, not just affine transformations.

10.3 Quantum Gates
In the world of quantum gates, we use unitary matrices. For qubits,

U(2) = {2×2 unitary matrices}.

For qudits,
U(d) = {d×d unitary matrices},

which are the operators that act as quantum gates.

Note that if we have |ψ⟩, eiθ |ψ⟩ will have the same behavior when measured. Thus, the "phase" degree of
freedom is not relevant.

Example 10.5 (Pauli Gates)
The NOT gate, which does a bit flip, is denoted

X =

(
0 1
1 0

)
= σx = σ1.

The Y gate is denoted

Y =

(
0 −i
i 0

)
= σy = σ2.

The phase flip gate is denoted

Z =

(
1 0
0 −1

)
= σz = σ3.

We can think of the Y gate as doing a bit flip, then a phase flip, up to a phase of i.

∗The field with two elements, where addition and multiplication are considered modulo 2.
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We might try to produce other gates, as in the classical case, with these Pauli gates as "building blocks."
Unfortunately, this does not work.

Claim 10.6. The set {σx, σy, σz} of Pauli gates are not universal.

Proof. In fact, they are extremely limited: compositions of Pauli gates produce another Pauli gate (up to
a phase shift). We have XY = iZ, Y X = −iZ, Y Z = iX = −ZY , and ZX = iY = −XZ. Moreover,
X2 = Z2 = Y 2 = I. Moreover, conjugating† a gate by another gate flips the sign, XYX = X(−XY ) = −Y . In
general, for i ̸= j, σiσjσi = −σj . Thus, the set of Pauli gates do not generate all gates.

Example 10.7
Recall the Hadamard gate

H =
1√
2

(
1 1
1 −1

)
.

We haveH2 = I, and moreover the Hadamard gates play nicely with the Pauli gates: HXH = Y,HZH = X,
and HYH = iHXZH = iHXHHZH = iZX = i2Y = −Y. Thus, {I,X, Y, Z,H} is also not universal.

Next time, we will talk about what is universal. The Euler angle decomposition states that any U ∈ U(2) can
be written as U = eiϕRz(α)Rx(β)Rz(γ), where Rx and Rz are rotations around the x and z axes. We can
define Rj(θ) = eiθσj . This decomposition is analogous to the case of 3D real rotations. Using these rotations,
we can build up any 2×2 unitary, and obtain universality for the 2×2 case.

†Conjugating by A means taking A−1XA, and here A−1 = A.
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11 Single-Qubit Gates
We already talked about universal gate sets for classical gates. Today, we will discuss

• Universality for single-qubit gates

• Universality for multi-qubit gates

11.1 Bloch Sphere
Recall that U(2) is the set of 2×2 unitary matrices (with complex entries). These unitary matrices are the
operations that act on qubits; that is, U(2) is the set of all single-qubit gates. It turns out that U(2) is secretly
the same as rotations and reflections of the Bloch sphere, which is a sphere in R3, or 3-dimensional real vectors.

Definition 11.1
Recall the Pauli matrices

σx =

(
0 1
1 0

)
, σz =

(
1 0
0 −1

)
, σy =

(
0 −i
i 0

)
.a

aA mnemonic is that "minus i flies high."

Note that the Pauli matrices are unitary. These matrices satisfy σ2
x = σ2

y = σ2
z = I. Moreover, note that

σxσy = iσz, σzσx = −iσz,

and all cyclical permutations of these are true. We can write

σiσj = δijI + iεijkσk

Definition 11.2 (Levi-Civita symbol)

The Levi-Civita symbol is εijk =


+1 if ijk = xyz, zyx, yzx

−1 if ijk = yxz, zyx, xzy

0

.

Essentially, if any of the indices repeat, ε is 0, cyclical permutations of xyz are 1, and cyclical permutations of
zyx are -1.

Given a 3-dimensional vector v ∈ R3, we can construct a matrix v · σ = vxσx + vyσy + vzσz ∈ C2×2.

Proposition 11.3
The eigenvalues of v · σ are ±|v|.

Proof. We can check that

(v · σ)2 =
(∑

viσi

)(∑
vjσj

)
=
∑
ij

(vivj)(σiσj).

Plugging in the identity for σiσj , we have

=
∑
ij

vivj (δijI) + vivj

(∑
k

εijkσk

)
,

and since δij is only nonzero when i = j, we end up with

= |v|2I + vivj

(∑
k

εijkσk

)
.
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From the property of the epsilon symbol, we have
∑
ijk εijkvivjσk = −

∑
ijk εjikvjviσk, since εijk = −εjik =

−
∑
ijk εijkvivjσk. Thus, this sum is

∑
ijk εijkvivjσk = 0; this exploits the antisymmetry of the ε symbol. Thus,

this becomes
= |v|2I.

Therefore,
(v · σ)2 = |v|2I.

In the eigenbasis, we have
(
λ1

λ2

)2

=

(
λ1

λ2

)
=

(
|v|2

|v|2
)

. Thus, taking the square root shows that

±|v| are the eigenvalues of v · σ.

Now, we want to know the eigenvectors. The trace of each of the Pauli matrices is zero, so since the trace is
linear, v · σ has trace 0. We can call the eigenvectors |±v⟩ ∈ C2. A vector in spherical coordinates is written assin θ cosϕ
sin θ sinϕ

cos θ

 . We can calculate the eigenvectors.

Proposition 11.4
The eigenvector |v⟩ = cos θ2 |0⟩ + eiϕ sin θ

2 |1⟩ has eigenvalue +|v| = +1 for σ · v. Also, |−v⟩ = sin θ
2 |0⟩ −

eiϕ cos θ2 |1⟩ is an eigenvector with eigenvalue −1 = −|v|.

Then, we see that v in the Bloch sphere is equivalent to |v⟩ ∈ C2. The parametrization of the Bloch sphere is

v =

sin θ cosϕ
sin θ sinϕ

cos θ

.

Example 11.5
Here, v̂ is a name for the ket, and |v⟩ is the ket, which is two-dimensional.

v⃗ θ φ |v⟩
ẑ 0 ? |0⟩
−̂z π ? |1⟩
x̂ π/2 0 |+⟩
−̂x π/2 π |−⟩
ŷ π/2 π/2 |i⟩
−̂y π/2 π/2 |−i⟩

In 3D space, the angle between v and −v is π. In ket space, the angle between z and −z is π/2 (the angle is
defined in terms of the inner product). The angle is cut in half or doubled when going between spaces. So the
ket space is called the "spin 1/2 representation of SU(2)." That is, if |v⟩ , |w⟩ has an angle α between them,
then v, w has angle 2α. In this parametrization, global phases vanish in the Bloch sphere.

Intuitively, |ψ⟩ has two complex numbers, which is the same as four real numbers, and then there are only
three real numbers because the complex vectors are unit vectors, and lastly ignoring global phase yields two
real numbers. That is why the Bloch sphere is a 2-dimensional manifold.

Question. Why are we doing this?

Answer. Because there is a very rich theory of decomposing 3D rotations, using the Bloch sphere, we can use
these decompositions of 3D rotations for unitary operations on unit complex vectors.

11.2 Rotations and Gates
By calculation, unitary matrices can be decomposed into points on the sphere, with extra angles.
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Theorem 11.6
Any unitary matrix U ∈ U(2) can be decomposed as

U = eiα(cosβI + i sinβv · σ),

where v is a unit vector.

Then, U in this form becomes a rotation around the v-axis, by angle β. Since the global phase vanishes, α does
not matter.

Corollary 11.7
All single-qubit gates are rotations in 3 dimensions.

Rotations in 3D have been studied for hundreds of years, so this is great, since we now know how to decompose
these unitary matrices/rotations.

11.3 Universality
Since there are infinitely many rotations in 3D, there is no possible way to use a finite number of gates to
produce all rotations in 3D. Thus, the notion of universality has to change for these continuous rotations.

Definition 11.8
A set of gates is universal if any rotation can be approximated arbitrarily well by products of these gates.a

aIt would also work to allow the set of gates to be continuously parametrized, but this way makes the gates more "digital."

Most gate sets are universal, avoiding symmetry groups inside of SU(2). For example, gates that all rotate
around the same axis, or gates that always preserve the xy-plane will not work.

Example 11.9
The gate set

G = {H,Rzθ},

for any θ such that θ/π is irrational, is universal.

Here, Rz(θ) = cos θI + i sin θσz.
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12 Multi-Qubit Gates
Today, we will talk about:

• Multi-qubit universality

• Discrete universal gate sets

12.1 Review
We can exponentiate matrices either applying it to the eigenvalues, if the matrix is diagonal, or take a Taylor
series. We can write

eiθσj =
∑
n≥0

(iθσj)
n

n!
= I + iθσj −

θ2

2
σ2
j −

iθ3

6
σ3
j +

θ4

24
σ4
j + · · · ,

and using σ2
j = I, this yields

=

(
1− θ2

2!
+
θ4

4!
+ · · ·

)
I +

(
θ − θ3

3!
+
θ5

5!
+ · · ·

)
iσj = cos θI + i sin θσj = Rj(θ).

Then, for |v| = 1, recall that we calculated that (v · σ)2 = |v|2I = I. Thus,

eiθv·σ =
∑
n≥0

(iθ)n

n!
(v · σ)n = cos θI + i sin θv · σ = Rv(θ).

This is a rotation around the v-axis.

Therefore, any U ∈ U(2) can be written as U = eiϕRv(θ). So up to a phase, unitary matrices are the same as
rotations up to a phase.

Note 12.1
We have U(2) = 2×2 unitaries. However, we say that the overall phase "doesn’t matter", because
| ⟨vi|eiϕ|ψ⟩ |2 does not depend on ϕ. In reality, no outcome will ever be different between two states that
differ by an overall phase. We can thus declare states that differ by an overall phase to be the same state (we
tend not to actually do this because it makes the math simpler). Then, SU(2) = {U ∈ U(2) : detU = 1},
where I ∈ SU(2). This removes the degree of freedom that comes from a global phase.

12.2 Universality of Multi-Qubit Gates
Here, CNOT means a CNOT between any two pairs of qubits.∗

Claim 12.2. CNOT and arbitrary single-qubit gates are universal.

In place of CNOT, essentially any entangling 2-qubit gate can be used instead. The important idea is that this
can be done at all.

We can think of CNOT as a C-X† gate, where the C-U gate can be written as |0⟩ ⟨0| I + |1⟩ ⟨1| ⊗ U =

(
I 0
0 U

)
as a block matrix. Consider (I ⊗ U)CNOT (I ⊗ U†)CNOT.

Write U = Rz(θ) and U† = Rz(−θ) = e−iθZ . Then XU†X = e−iθXZX = eiθZ . We have AeBA−1 = eABA
−1

=∑
n

(ABA−1)n

n! =
∑
n
ABnA−1

n! .

In this case,
XU†XU = U2 = Rz(2θ).

That is, doing an X before and after a z-rotation reverses the direction of the rotation.
∗Note that in the homework, we could do SWAP with CNOT, so it’s only technically necessary to have CNOTs between qubit

i and qubit i+ 1.
†Here the X gate is the SWAP gate with matrix

(
0 1
1 0

)
.

37



Lecture 12: Multi-Qubit Gates

Thus,
= C −XU†XU = C −Rz(2θ)

if U = Rz(θ).

Moreover, for U = Rx(θ), UXU†X = I. Also, if U = Ry(θ), then UXU†X = Ry(2θ).

Therefore, for all U , there exist α, β, γ such that

C −Rz(θ)C −Ry(β)C −Rz(γ) = C − U.

That is because we can write U as an Euler angle decomposition. Note that (C − U)(C − V ) = C − UV. We

can write C − (eiϕI) =

(
I 0
0 eiϕI

)
=

(
1 0
0 eiϕ

)
⊗ I = eiϕ/2Rz(−ϕ/2)⊗ I.

That is, this is a z-rotation on the first qubit and nothing on the second qubit. Thus, we can do a controlled U
for any U .

Now, let’s go beyond two qubits. We have CC-U to be

CC-U = (|00⟩ ⟨00|+ |01⟩ ⟨01|+ |10⟩ ⟨10|)⊗ I2 + |11⟩ ⟨11| ⊗ U).

Then, Ck-U can be done by "do U if the first k qubits are 1k = 11 · · · 1︸ ︷︷ ︸
k times

.

Given U =

(
a b
c d

)
, we have

CC-U =

I a b
c d


or 

a b
1

c d
1

 ,

where most of it looks like the identity, where there is some with a, b, c, and d. This is what is needed for
Gaussian elimination, where these CC−U operations form the "elementary operations." If this is possible, then
any nonsingular matrix can be constructed.

Therefore,
UT1 · · ·Tm = I,

where Ti are two-level rotations. Therefore,
U = T †

m · · ·T †
1

is also a series of two-level rotations. This is not very efficient: doing this requires about 4n rotations, which
leads to O(n4n) gates. We saw the same idea for circuits, where our construction leads to O(n2n) time, but
generally we are not constructing arbitrary circuits.

To actually make these, for our example 000 and 011, we need a permutation P such that P |000⟩ = |110⟩ and
P |011⟩ = |111⟩. Then, we take P †CC-UP .

Up to an arbitrary phase, we can always write a ket as (cos θ/2, eiϕ sin θ/2) and we can correspond ig to the
Bloch sphere.
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13 Approximate Universality and the Oracle Input Model

13.1 Review
In order to act on the last state of an n-bit string with a unitary U , last time we constructed Cn−1U , a
multiply-controlled unitary, which mixes states |1n−10⟩ and |1n⟩.

In general, consider a two-level rotation∗ on |x⟩ and |y⟩, where x, y ∈ {0, 1}N . Consider a permutation P such
that P |x⟩ = |1n−10⟩ and P |y⟩ = |1n⟩. Then, taking P †Cn−1UP mixes |x⟩ and |y⟩ instead.

Example 13.1
Let x = 0110 and y = 1010. We want to take x 7→ 1110 and y 7→ 1111, and to do so, we can first take
x = 0110 7→ 0001 7→ 1110, and then y = 1010 7→ 0000 7→ 1111. First, apply X1X2 = X ⊗ I ⊗X ⊗ I, which
is a NOT on the first and third bits. This takes y to 0000, and

X1X2 |0110⟩ = |1100⟩ .

Next, we can then apply CNOTs to clean up x while maintaining y. We can apply CNOT14 which takes
|1100⟩ to |1101⟩, then CNOT41 which takes |1101⟩ to |0101⟩, then CNOT42, which finally takes |0101⟩ to
0001.

Thus, this composition CNOT42CNOT41CNOT14X1X2 takes x 7→ 0001 and y 7→ 0000. Now, it suffices to
apply C3U , where U takes 0001 7→ 1110 and 0000 7→ 1111.

This is clearly very inefficient, but we are simply proving that CNOT and single-qubit gates together are
universal. In practice, we will focus on finding efficient algorithms to perform a multi-qubit gate.

13.2 Approximate Universality for Single-Qubit Gates
In fact, two gates suffice for approximate universality in quantum computing.

Proposition 13.2

The gate T =

(
1 0
0 e−π/4

)
and H are universal for U(2), ignoring phase.a

aWe can alternatively write SU(2), but then we would have to add a phase to T and H to put them in SU(2).

The set {T,H}∗, which is the set of operations coming from applying T and H each some finite number of
times, are countable. However, U(2) is uncountable, so it is impossible to precisely approximate each of the
uncountable matrices in U(2) with the countably many matrices in {T,H}∗.

Definition 13.3
A gate set G is approximately universal, or universal for U(2) if for all U ∈ U(2) and for all ε > 0,
there exists a string of V1, · · · , VL ∈ G such that

d(U, VLVL−1 · · ·V1) ≤ ε.a

aAny reasonable metric on matrices will work as a choice for d.

Guiding Question
How does L scale with ε?

That is, how many operations does it take to approximate any single-qubit gate to a particular accuracy?

∗A two-level rotation is of the form


1

1
a b

1
c d

1

, which acts trivially on all but two bit-strings.
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Example 13.4
We can write

SU(2) = {cos θI + i sin θv · σ},

where (cos θ, sin θv) is on the 3-sphere in R4. Let the gate set be T and H. Then, each string of T and H
will be a point on the 3-sphere SU(2). By drawing a ball of radius ε around each of the points that we are
considering, say points in {T,H}L (strings of length exactly L), if the balls cover the 3-sphere SU(2), then
this means that each gate in SU(2) can be approximated to ε-accuracy with gates in {T,H}L.

Then, take the volume of the 3-sphere to be some constant C. The volume of the ball of radius ε, intersected
with the 3-sphere, is C ′ε3, ignoring phase. To obtain a lower bound, we take the best possible case where
the points are equally spaced and the balls don’t overlap. Covering U(2) requires L, where we take {T,H}L
to satisfy at least

2LC ′ε3 ≥ C.

That is,
L ≥ Ω(log(1/ε)).

We also want to talk about achievability. For specific gate sets, we can in fact achieve a reasonable bound.
This is described by the Solovay-Kitaev-Kuperberg theorem, which states that

L ≤ O(log1.44
1

ε
)

suffices.

Failure to be universal is a set of polynomial equations, which are obeyed by a set of measure 0. Because one
gate commutes with itself, the scaling is much worse with L, only L, rather than around 2L for two gates.

Example 13.5 (Rotations around one axis)
Recall that Rz(

√
2πm) = Rz(

√
2πm mod 2π) can approximate almost any Rz(θ), and taking m = 0, · · · , L

shows that L ∼ 1
ε . That is, to approximate Rz(θ) with ε-accuracy takes O(1/ε) length.

Question. Why do we constrain ourselves to discrete gate sets, rather than continuous?

Answer. It is true that in real life, the quantum operations we have are continuous. However, this will have
applications to quantum error-correction.

13.3 Introduction to Quantum Algorithms
First, we will talk about input models. A natural input model is the standard input model.

Definition 13.6 (Standard Input Model)
In the standard input model, an input x = (x1, · · · , xn) is a string of bits, and the quantum computer
is initialized to |x⟩ ⊗ |0⟩⊗i, where the 0s are extra working space.

Another potential model is the oracle model, which encodes functions of functions, such as summing the outputs,
or taking the derivative.

Definition 13.7
In the oracle model, the input is encoded by a function f : {0, 1}n → {0, 1}, or a truth table, rather than a
string. The operations on the input are F (f) = F (f(000), f(001), · · · , f(111)).

In the oracle model, there is on-demand access to the output of the function f given the input. This could be
implemented in the standard input model, but in that case every value of f would have to be stored, which is
not very efficient. Either we can say x→ f(x) is a subroutine that we have the source code for, or we could say
we have access to a black box "oracle" that computes f .
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In the oracle model, we can define the query complexity, which can be much easier to think about than the
standard computational complexity.

Definition 13.8
The query complexity of a function F in the oracle model is the number of calls to f are needed.

Example 13.9 (n = 1)
Consider an input f : {0, 1} −→ {0, 1}. We want to compute F (f), which returns whether f is constant, or
balanced. That is, F returns whether f(0) = f(1). The query complexity is 2, since it requires one call for
f(0) and one call for f(1).
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14 Oracles, Deutsch’s Algorithm, and Bernsetin Vazirani

14.1 Review
Recall that in the oracle input model, the input is not a bitstring, but rather a black-box function f : {0, 1}n −→
{0, 1}. The output would be some function of this function, such as the sum of all its outputs, or some property
of this function.

Example 14.1 (Classical oracles)
On a classical computer, the oracle input model may mean either that we have the source code for f , or
we have a black-box way to compute f .a A black-box model would make sense in a network case, where we
ask how many queries it will take to solve the question.

aThese two may seem very different, but there is a basic principle, which is not formalized here, from complexity theory,
which is that in general there is "no way" to "analyze" source code. In special cases, there may be a way to look at the source
code and figure out what it will do, but in general, there is no way to look at the source code and analyze it, other than just
running it, which is equivalent to a black box way to compute the function. One way of formalizing this principle is the halting
problem.

Recall from before that unitary quantum gates come from reversible classical operations.

Proposition 14.2
Reversible operations produce unitary gates.

Proof. A reversible or one-to-one classical operation is a permutation. ConsiderUp =
∑
x∈{0,1}n |P (x)⟩ ⟨x|, where

P is a permutation of {0, 1}n. Then, U†
pUp =

∑
x |x⟩ ⟨P (x)|

∑
y |P (y)⟩ ⟨y| . Since ⟨P (x)|P (y)⟩ = δP (x),P (y) = δxy,

using the fact that P is a permutation. Thus, U†
pUp =

∑
x,y δxy |x⟩ ⟨y| = I.

Example 14.3 (Bit-flip Quantum Oracle)
One way to create a quantum oracle Obitf is to decompose the source code for the oracle into classical ANDs
and NOTs, and then convert those quantum Toffolis. Then,

Obitf |x⟩ ⊗ |0⟩ = |x⟩ ⊗ |f(x)⟩ .

A more complete definition on a basis would be

Obitf |x⟩ ⊗ |y⟩ = |x⟩ ⊗ |y ⊕ f(x)⟩ ,

where ⊕ denotes XOR or alternatively addition modulo 2. This definition on a basis extends by linearity
to all inputs, including entangled states.

This gate is unitary, since the classical gate it comes from is reversible. The classical gate x, y 7→ x, y ⊕ f(x) is
reversible since applying it twice is the identity. To recover the classical oracle, we measure the second bit.
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Example 14.4 (Phase-flip Quantum Oracle)
Another way to create a quantum oracle is

Ophasef |x⟩ = (−1)f(x) |x⟩ .

Again, this is unitary.

Given Obitf , we have
Obitf |x⟩ ⊗ |−⟩ = (−1)f(x) |x⟩ ⊗ |−⟩ = (Ophasef |x⟩)⊗ |−⟩ .

a

To go from phase to bit-flip, it requires a controlled version of the phase-flip oracle. Performing a Hadamard
before and after a controlled phase-flip oracle yields a bit-flip oracle.

aNote that X |−⟩ = − |−⟩, and X |+⟩ = |+⟩, which are the eigenstates of the X operator.

The oracle model is essentially an assumption, for quantum computing.

14.2 Deutsch’s Algorithm, 1985
Consider f : {0, 1} → {0, 1}. Deutsch asked, "Is f constant or balanced?" That is, does f(0) = f(1)?

Classically, this requires 2 queries, to f(0) and to f(1).

Example 14.5 (Deutsch’s Algorithm)
However, in quantum computing, only one query to f(|+⟩) is required:

Ophasef |+⟩ = 1√
2

∑
x∈{0,1}

(−1)f(x) |x⟩ .

If f is constant, this corresponds to |0⟩+ |1⟩ and − |0⟩ − |1⟩, which are ± |+⟩, or |+⟩ up to a phase, and if
f is balanced, this corresponds to − |0⟩+ |1⟩ or − |0⟩ − |1⟩, which are ± |−⟩, which are |−⟩ up to a phase.

This suggests that we should then measure in the |+⟩ , |−⟩ basis. Measuring yields

P (+) =
∣∣∣⟨+|Ophasef |+⟩

∣∣∣2 =

∣∣∣∣∣ 1√
2

∑
x

⟨x|
∑
y

(−1)f(y)|y⟩

∣∣∣∣∣
2

=
1

2

∣∣∣∣∣∑
x

(−1)f(x)

∣∣∣∣∣
2

=

{
1 if constant
0 if balanced

.

This is equivalent to applying the Hadamard gate, which is the change of basis into the |+⟩ , |−⟩ basis, then
measuring using the standard measurement.

This algorithm is not actually very practical, as it only yields a 2x speedup, but it leads to a lot of interesting
theory.

In 1992, Jozsa came up with an improvement. Consider a generalization of Deutsch’s problem, with f :
{0, 1}n −→ {0, 1}. We say f is constant if the result is always 0 or always 1, and balanced if the result is 0
half for half of the inputs and 1 for the other half of the inputs. For n > 1, there are many possible f that
are neither constant nor balanced. This is called a promise problem because we are guaranteed that f is valid,
which means that f is either constant or balanced. Equivalently, our algorithm is guaranteed to work when f
is valid. This happens all the time in computer science.
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• The classical query complexity, with deterministic computing, is very hard. We require 2n−1 + 1 queries
to state that f is certainly constant or certainly balanced.

• The probabilistic complexity states that for k + 1 queries, P (error) ≤ 2−k. This problem is very hard for
deterministic computing but not very hard for probabilistic computing.

• It requires a somewhat strange formulation, but comparing the quantum complexity with the classical
deterministic complexity does yield an exponential speedup. To analyze this quantum algorithm, note
that the Hadamard gate can be written as

H =
1√
2

(
1 1
1 −1

)
=

1√
2

∑
x,y∈{0,1}

(−1)xy |x⟩ ⟨y| .

Applying H to each of the n bits can be written as

H⊗n =
1

√
2
n

∑
xi,yi∈{0,1}

(−1)x1y1 |x1⟩ ⟨y1| ⊗ · · · ⊗ (−1)xnyn |xn⟩ ⟨yn|

=
1

√
2
n

∑
x,y∈{0,1}n

(−1)x·y |x⟩ ⟨y| ,

where we turn bits into strings and multiplication into dot products.

Example 14.6 (Deutsch-Jozsa Algorithm, 1992)
Take the input |0n⟩, and apply H⊗n, then Of ,a then H⊗n again, and then measure.

Evaluating the first gate yields

H⊗n |0n⟩ = 1
√
2
n

∑
x,y

(−1)x·y |x⟩ ⟨y| (|0n⟩) = 1
√
2
n

∑
x

|x⟩ = |+⟩⊗n .

Evaluating the second gate then gives

OfH
⊗n |0n⟩ = 1

√
2
n

∑
x∈{0,1}n

(−1)f(x) |x⟩ .

Then, applying the last Hadamard yields

H⊗nOfH
⊗n |0n⟩ = 1

2n

∑
x,y

(−1)f(x)+x·y |y⟩ .

Measuring yields

Pr(0n) =

∣∣∣∣∑x(−1)f(x)

2n

∣∣∣∣2 .
This is essentially the same analysis as Deutsch’s algorithm, but on n qubits.

aWe write Of to mean Ophase
f .
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15 Simon’s Algorithm
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16 Shor’s Algorithm

16.1 Classical Factoring
In the past, to factor N , most people have seen an algorithm which could be called "trial division," which means
continually trying to divide N by smaller numbers. For a number of size N , there are logN bits, so polynomial
in logN means "polynomial time" for this kind of problem. The trial division algorithm takes around

√
N time,

which is not polynomial in logN.

The best current factoring algorithm is the generalized number field sieve method, which has runtime around
2∼2 log1/3N log log2/3N , which is already subject to some conjectures. With supercomputers, this is still very hard
to

In 1994, Shor’s algorithm was developed, which takes around log2N , subject to some classical preprocessing,
and recently in 2023 Regev reduced this time to log2/3N. Note that these are polynomial in logN. This is one
of the most promising outcomes of quantum computing, but intellectually, this may not be too surprising.

16.2 Overview of Shor’s Algorithm
Shor’s algorithm will take more than one lecture to cover.

1. Reduce factoring to period finding. That is, assuming period finding has an algorithm, we can produce
an algorithm for factoring. Period finding means that given f : Z −→ S with period a, which means that
f(x) = f(x+ a), period finding finds a. Period finding is an oracle problem.

2. Quantum algorithms for period finding, which uses the quantum fourier transform (QFT), which we will
go over later.

3. Provide a quantum algorithm for the QFT.

16.3 Number Theory
Today, we will go over basic number theory that everyone should know.

Euclid’s algorithm was also called the pulverizer in Indian antiquity.

Example 16.1 (Euclid’s Algorithm; or, The Pulverizer)
Euclid’s algorithm finds the GCD, or greatest common divisor, of two integers y, z ∈ Z. The idea is that
gcd(y, z) = gcd(y, z mod y). For example, gcd(24, 33) = gcd(24, 9) = gcd(6, 9) = gcd(6, 3) = 3.

The runtime of Euclid’s algorithm is efficient as each step cuts down the size of the numbers exponentially.

Choose a random a ∈ Z such that 1 < a < N . Then, check whether gcd(a,N) = 1. If a and N are not coprime,
then we have found a nontrivial divisor of a.

Example 16.2 (Hard Case)
A hard case of Shor’s algorithm would be when N = pq for large primes p and q.

Definition 16.3
The order of a is min r > 0 such that ar mod N = 1.

Such an r exists when a and N are coprime, since we can write down a, a2, a3, · · · all modulo N . Since there
are only finitely many values this infinite sequence can take on, in {0, 1, · · · , N − 1}, by the pigeonhole principle
there must exist x < y such that ax = ay mod N , so ay−x = 1 mod N when a and N are coprime by the
Chinese Remainder Theorem.

We can define f(x) = ax mod N. We can compute f(x) efficiently. In fact r is the period of f(x) since
ar+x = arax = ax mod N .

Now let’s convert factorization to period finding. Suppose we know r = ord(a). Then ar = 1 mod N and
ar−1 = mN for somem ∈ Z. Suppose that r is even. Then ar/2+1 ̸= 0 mod N , since (ar/2+1)(ar/2−1) = mN ,
so gcd(ar/2 − 1, N) yields a nontrivial factor.
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Example 16.4
For N = 33, a = 2, the order of 2 mod 33 is r = 10. Happily, r is even, and 2r/2 + 1 = 33. Bad luck! This
means that 33 divides (25 − 1)(25 + 1) = 31 · 33.

Let’s try it again with a = 5. Then r = 10 and 33
∣∣22 · 24.

Theorem 16.5 (Chinese Remainder Theorem)
If N = pq for p, q distinct, then x ∈ {0, · · · , N − 1} can be uniquely determined by x mod p and x mod q.
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17 Shor’s Algorithm, Part 2
Last time, we talked about how to factor, given order-finding/period-finding. This time, we will talk about how
to do order-finding, given the quantum fourier transform, as well as some modular arithmetic.

17.1 Quantum Fourier Transform
We want to factor a number N , using the following steps.

• Choose a random a between 1 and N .

• Then, we choose n such that N2 < 2n ≤ 2N2.

• Prepare a superposition of bits from 0 to 2n − 1,

1
√
2
n

2n−1∑
x=0

|x⟩ ⊗ |0⟩ .

• Now, we want to compute f(x) = axmod N on each of these bits in the register, which yields

1
√
2
n

2n−1∑
x=0

|x⟩ ⊗ |axmod N⟩ .

Practically, we can use repeated squaring to compute powers, which boils down to basic arithmetic
operations, which generates garbage bits which we then decompute and get rid of.

• The next step is a little strange, just like how it was strange in Simon’s algorithm: throw away the
computed register |axmod N⟩ by measuring it. After measuring, the superposition over all x will collapse
only to the possible values of x that could have led to axmod N. For example, if r = ord(a), then if
ax0 = 17mod N then ax0+rk = 17mod N , so for 0 ≤ x0 ≤ r, we will have m ≈ 2n

r , where 2n

r may not be
an integer, which is why we take n sufficiently large. This becomes

1√
m

m−1∑
k=0

|x0 + kr⟩ .

Recall in Simon’s algorithm it was |x⟩+|x⊕c⟩√
2

. This yields a series of spikes with some periodicity, which
we want to find.

• We have the QFT operator

UQFT = F =
1

√
2
n

2n−1∑
x,y=0

e2πixy/2
n

|x⟩ ⟨y| .

Here, with d = 2n this is
1√
d

d−1∑
x,y=0

ωxy |x⟩ ⟨y| ,

where ω = e2πi/d. This is

1√
d


1 1 1 · · · 1
1 ω ω2 · · · ωd−1

1 ω2 ω4 · · · ωd−2

...
...

...
. . .

...
1 ωd−1 ωd−2 · · · ω

 ,

where the real part of each row can be visualized as a sine wave with increasing frequency, due to the
characterization of complex numbers ωix = cos(x) + i sin(x). The real part of the column can similarly
be visualized as a sine wave with increasing frequency. This is the discrete quantum Fourier transform.

• Next, apply the discrete QFT operator to our superposition of states, which yields UQFT 1√
m

∑m−1
k=0 |x0 + kr⟩ ,

and measure. This will reveal some information about r.

Claim 17.1. The outcome y ≈ 2n

r j is likely.
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Proof. Applying the QFT gives

UQFT
1√
m

m−1∑
k=0

|x0 + kr⟩ = 1√
m2n

m−1∑
k=0

2n−1∑
y=0

ωyx0ωykr |y⟩ .

Measuring the probability of y yields

P (r) =
1

m2n

∣∣∣∣∣
m−1∑
k=0

ωykr

∣∣∣∣∣
2

.

First, note that the x0-dependence goes away, and does not affect the interference pattern coming from
the sum over k. We have

U†
QFTUQFT =

1

d

∑
x,y

ω−xy |y⟩ ⟨x|
∑
z,w

ωzw |z⟩ ⟨w| .

Here, ⟨x|z⟩ = δxz. This yields
1

d

∑
xyw

ωx(w−y) |y⟩ ⟨w| .

Next, sum over x. If w = y, then
∑
x ω

x(w−y) = d = 2n. If w ̸= y, then
∑
x ω

x(w−y) = 0, using the formula
for a geometric series. Thus, this becomes

1

d

∑
yw

dδyw |y⟩ ⟨w| = Id.

So in fact, UQFT is a unitary operator. Intuitively, phases that oscillate rapidly will "cancel out," which
is destructive interference, whereas phases that stay the same will add up.

Intuitively, let y ≈ 2n

r j. Then, ωykr ≈ ω2njkr/r ≈ 1jk = 1.

In more detail, we have ∣∣∣∣∣∑
k

ωyrk

∣∣∣∣∣
2

=

∣∣∣∣1− ωyrm

1− ωyr

∣∣∣∣2 =
sin2(yrm(2π)/(2 · 2n))
sin2(yr(2π)/(2 · 2n)

.

Suppose y = 2nj
r + δ where |δ| < 1/2. Then,

Pr(y) =
1

m2n
sin2(πmrδ/2n)

sin2(πmrδ/2nm
.

Here, recall that mr ≈ 2n, so this is approximately

≈ 1

m2n
sin2(πδ)

sin2(πδ/m)
.

Using linear approximation for sin near 0, α/(π/2) ≤ sin(α) ≤ α since m is exponentially large and πδ is
constant. So this is

≥
(π
2

)2 m
2n
.

This is true only for y that are close to 2nj/r. Since 1 ≤ y ≤ 2n, there are r different values of j, each one
proportional to 2n/r, so the total probability is about 4

π2
rm
2n ≈ 4

π2 . These are the ones where the phases
almost line up, and each one individually has small probability, but if you add them all up, there is a
constant chance of hitting one of them. This gives enough information to figure out r.

Here we basically try to figure out the phase r by adding up different phases and if the phase we have is similar
to the phase r, they will constructively interfere.
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18 Shor’s Algorithm, Part 3

18.1 Continued Fractions
Last time, for axmod N , we computed r = ord(a) and used this to get a factor with gcd(ar/2 ± 1, N). We
found that y = 2nj

r + δ with high probability for some j ∈ Z, |δ| ≤ 1/2. Then, y
2n = j

r +
δ
2n ; note that we chose

2n ≈ N2, and that δ
2n is much less than 1/2n. Also, we know that 0 < r < N .

How can we extract j/r given y/2n? There is a classical algorithm called continued fractions which does this.

Example 18.1
For N = 33, a = 5, r = ord(5) = 10, we have 33|22 · 24. For n = 11, 2n = 2048. Suppose we get y = 615.
How can we find that the order is 10? We have y

2n = 615
2048 ≈ p

q for q < N = 33.

In the continued fractions algorithm, we see that 2048
615 = 3 + 203

615 , so

615

2048
=

1

3 + 203
615

=
1

3 + 1
3+ 6

203

=
1

3 + 1
3+ 1

33+ 5
6

=
1

3 + 1
3+ 1

33+ 1
1+ 1

5

.

If this number were irrational, we would keep going, but for rational numbers it terminates. Zeroing out
each remainder provides a fraction approximation with smaller and smaller error.

This series of rational approximations, in this example, are 1
3 ,

1
3+1/3 = 3

10 ,
100
333 , and so on, which approach

615
2048 . Eventually, the error term will be small enough to be δ/2n. It turns out that in this example, 615

2048 ≈ 3
10

is the desired approximation.

Theorem 18.2
If |α− p/q| ≤ 1

2q2 , then p/q appears in the continued fraction series for α.

We chose n sufficiently large to satisfy the conditions of this theorem.

18.2 Quantum Fourier Transform

Let Fn be the QFT on n qubits. Then Fn = 1√
2
n

∑2n−1
x,y=0 ω

xy
n |y⟩ ⟨x|, where ωn = e2πi/2

n

. For F1, ω1 = −1 and

F1 =
1√
2

∑
x,y∈{0,1}

(−1)xy |x⟩ ⟨y| = 1√
2

(
1 1
1 −1

)
= H.

For F2, ω2 = i, so

F2 =
1

2


1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i

 ,

where each row and column progresses by a different phase.

Example 18.3
What is the circuit for F2?

To see the circuit for F2, let x = x0 + 2x1 + · · · + 2n−1xn−1 and y = y0 + 2y1 + · · · + 2n−1yn−1. Then
ωxyn = ωxymod 2n

n , since ω2n

n = 1. In base 2, xy mod 2n = x0y0+2(x1y0+x0y1)+· · ·+2n−1(xn−1y0+· · ·+x0yn−1).
We can rewrite

x = x+ 2n−1xn−1, y = y0 + 2y,

where x = x0 + 2x1 + · · ·+ 2n−2xn−2 and y = y1 + 2y2 + · · ·+ 2n−2yn−1.

Now,

⟨y|Fn|x⟩ =
1

√
2
nω

xy
n =

1
√
2
n exp

(
2πi

2n
(
2n−1xn−1y0 + 2n−1xn−12y + xy0 + 2xy

))
.
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Since there is a factor of 2n, 2n−1xn−12y = 0 mod 2n. This becomes

(−1)xn−1y0

√
2

ωxy0n

ωxyn−1√
2n−1

.

The first term (−1)xn−1y0
√
2

looks like a Hadamard, ωxy0n looks like a phase shift, and the last term ωxy
n−1√
2n−1

=

⟨y|Fn−1|x⟩, which is a smaller Fourier transform. This then suggests a recursive algorithm.

In particular, for Ri the controlled
(
1 0
0 ωn

)
gate,

· · ·

· · ·

· · ·

· · ·

· · ·

xn−1 H R2 R3 Rn−1 y0

xn−2

Fn−1

y1

xn−3 y2

...
...

x0 yn

We want to decompose all of this into 2-qubit gates. Here, we write ωxy0n = ωy0x0+2y0x1+···
n = ωy0x0

n ωy0x1

n−1 · · · .

This is a controlled gate C-
(
1 0
0 ωn

)
.

In particular,

F2 =

x1 H R2 y0

x0 H y1

This is a quantum Fourier transform. Classically, there is a fast Fourier transform. Algorithmically, they live in
different worlds, but there are ways to apply ideas from the FFT to the QFT.
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19 Quantum Fourier Transform for Phase Estimation
Today, we will talk about a different application of the QFT, which is phase estimation. This will be a different
"class" of problem than the one that Shor’s algorithm tries to solve.

19.1 Phase Estimation Problem
Given an n-qubit unitary U and an eigenstate |v⟩ such that U |v⟩ = eiθ |v⟩, the phase estimation problem is
to find θ. For this algorithm, we will use:

• one copy of |v⟩

• the ability to quickly perform C-U2k , given an input k — writing any number x in binary, we thus have
the ability to quickly perform C-Ux∗

In Shor’s algorithm, the inputs and outputs are classical. In constrast, for phase esimation, the inputs U
and |v⟩ are presented as a quantum operation and quantum state rather than classical bitstrings. This puts
phase estimation in a different category from Shor’s algorithm. At the end of the day, for a full algorithm, we
will always want a classical input and output, like in Shor’s algorithm. In contrast, an algorithm like phase
estimation can be thought of as a subroutine or a piece of a potentially larger algorithm. Moreover, there is no
classical algorithm to compare phase estimation to, so there is no way to define a "quantum speedup."

Algorithm 19.1
Phase estimation performs the following circuit, where the accuracy depends on the chosen number m.
Here, U is an n-qubit unitary, |v⟩ is an eigenstate, and F is the QFT. Also, where x = F |0m⟩, the CUx
gate performs Ux on the second register:

|0m⟩ F F †

y

|v⟩ Ux

In phase estimation, we choose a number m, which determines the accuracy of the result, and apply a phase
estimation circuit to |0m⟩ |v⟩, then measure. We can analyze each component of the circuit.

• First, we apply F to the first register of |0m⟩ |v⟩ . Given an input |0m⟩, applying the QFT F is equivalent
to a Hadamard to each component, so

F |0m⟩ ⊗ |v⟩ = 1√
2m

∑
x

|x⟩ ⊗ |v⟩ .

• Next, we apply a controlled U to the second register, which is yields

1√
2m

2m−1∑
x=0

|x⟩ ⊗ Ux |v⟩ = 1√
2m

∑
x

|x⟩ ⊗ eixθ |v⟩ = 1√
2m

∑
x

eixθ |x⟩ ⊗ |v⟩ ,

first using that |v⟩ is an eigenvector, and then using the multilinearity of the tensor product. Sometimes,
transferring a phase from the second component to the first component using multilinearity is called
"phase kickback."

• Then, we apply F † to the first register. This yields

F † 1√
2m

∑
x

eixθ |x⟩ ⊗ |v⟩ = 1

2m

∑
y

(∑
x

exp

(
ixθ − 2πixy

2m

))
|y⟩ ⊗ |v⟩ .

• Lastly, we measure the first register in the standard basis and obtain some result y. The probability of
obtaining y is the squared norm of the amplitude on this state. The amplitude or coefficient of |y⟩ is

1

2m

2m−1∑
x=0

exp

(
ix

(
θ − 2π

2m
y

))
.

∗This is quite a strong assumption, that we can perform CU2k quickly and not just CU.
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In some sense, this amplitude is a comparison between the true phase θ and 2πy
2m

†, which can be interpreted
as measuring how good 2πy

2m is as an "estimate" for the true phase. Intuitively, when the estimate is perfect
and θ = 2π

2m y, the sum of exponentials will compound, and the measurement will always yield y with a
probability of 1. In contrast, for poor estimates 2πy

2m far from θ, the sum of exponentials will cancel out,
and the measurement will yield y with very low probability.

To precisely calculate the probability of measuring y, we can use the geometric series formula. The
probability is

1

2m

2m−1∑
x=0

exp

(
ix

(
θ − 2π

2m
y

))
= 2−m

1− exp
(
i2m

(
θ − 2π

2m y
))

1− exp
(
i
(
θ − 2π

2m y
)) .

Using the identity |1− eiα|2 = sin2(α/2), the probability, which is the squared norm of the amplitude, is

Pr(y) = 4−m
sin2

(
2m
(
θ
2 − π

2m y
))

sin2
(
θ
2 − π

2m y
) .

The numerator is upper bounded by 1, and for the sake of time, we use linear pproximation to roughly
lower bound the denominator‡. Thus, the probability that our measurement results in y is approximately
upper bounded by

⪅
1

4m
(
θ
2 − πy

2m

)2 =
π−2

(y − 2mθ/2π)2
.

Thus, the probability of y as the result of measurement essentially depends on the difference between y
and θ, after rescaling by 2m

2π , which is necessary since θ is between 0 and 2π while y goes from 0 to 2m.
The probability that our measurement result y, which we use as an estimate for θ, differs by more than δ
from the true angle θ (rescaled) can be calculated as

Pr
(∣∣∣∣y − 2mθ

2π

∣∣∣∣ > δ

)
=

∑
y such that |y−2mθ/(2π)|>δ

Pr(y)

Let z = |y − 2mθ/2π|. We can do an upper bound using an integral:

⪅ 2

∫ ∞

δ

dz
1

π2z2
=

2/π2

δ
.

Thus, the probability of being more than 10 away is ∼ 1/10, the probability of being more than 100 away
is ∼ 1/100, and so on. That is, from our measurement, we learn θ up to accuracy O(1/2m).

19.1.1 Superposition of Eigenstates

Suppose the input is
∑
x ax |vx⟩, where |vx⟩ is an eigenstate with eigenvalue eiθx . It turns out that this argument,

run in superposition, will have a phase estimate attached to it. We get
∑
x ax |vx⟩

∑
y by|x |y⟩, with the property

that |by|x|2 is peaked near y = 2mθx/2π. For each value of x, we will have a different by|x. Whether or not we
can distinguish the eigenvalues depends on the eigenvalue gap. If all the eigenstates have the same eigenvalue,
then phase estimation can never tell them apart.

In general, we can identify a specific |vx⟩ if |θx − θx′ | ≫ 1
2m for all x′ ̸= x.

Example 19.2
Suppose we have 1

2 (|v0⟩ − |vπ/10⟩+ i |v3π/10⟩+ |v4π/10⟩). Using phase estimation, get either 0, π/10, 3π/10,
or 4π/10, where the quantum result will collapse into one of the |v0⟩ , |vπ/10⟩ , |v3π/10⟩ , |v4π/10⟩ states.

If we had |(3 + 10−9)π/10⟩, it becomes (i |v3π/10⟩+ |v3.000000π/10⟩)/
√
2.

†Here, 2πy
2m

is essentially y but in different units
‡The full analysis is slightly more complicated.
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19.2 Discrete Log Problem
Now, we can move on to a different problem, which we will discuss on Wednesday.

• Consider ZN to be the integers mod N , {0, 1, 2, · · · , N − 1}, with +,−,× defined modulo N .

• Another way to think about this is in terms of equivalence classes, whereNZ = {, · · · ,−2N,−N, 0, N, 2N, · · · }
where ZN = {0+NZ, 1+NZ, · · · , (N − 1)+NZ}, which is a set of sets, where we can add, subtract, and
multiply the sets as usual modulo N . For example, (3 + 6Z) + (4 + 6Z) = 1 + 6Z, where N = 6.

In division, we have gcd(a,N) = ax + Ny for some x, y ∈ Z, and when a and N are coprime, we can write
x = a−1 mod N . There is always a multiplicative inverse when N is prime.
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20 Discrete Log

20.1 Review
Last time, we talked about phase estimation, which is a very important subroutine. One algorithm that uses
phase estimation is discrete log.

20.2 Basic Number Theory
Today, we will be working in Zp. When p is prime, every integer is relatively prime to p so this forms a field,
where each element has a multiplicative inverse.

In Zp, the following theorem holds.

Theorem 20.1 (Fermat’s Little Theorem)
When p is a prime, xp−1 = 1 for all x ̸= 0.

A number theory corollary is that the order will always divide p− 1. Moreover, we can define primitive roots,
where in the following definition we don’t consider gp−1 = 1.

Definition 20.2
An element g ∈ Zp is a primitive root if {1, g, g2, · · · , gp−2} = {1, 2, 3, · · · , p − 1}. Equivalently, this is
true if ord(g) = p− 1.

Example 20.3
For p = 11, g = 2 is a primitive root because we have 1, 2, 4, 8, 5, 10, 9, 7, 3, 6, 1, whereas for g = 3, which is
not a primitive root, we have 1, 3, 9, 5, 4, 1, · · · .

20.3 Discrete Log
The discrete log problem is analogous to the usual log.

Problem 20.4
Given p prime, and g a prime root, given ga, find a.

Clasically, the discrete log problem is O(p), or exponential in the number of bits. The discrete log is interesting
because it’s used for the Diffie-Hellman key exchange, in cryptography.

Example 20.5 (Diffie-Hellman Key Exchange)
Alice and Bob both agree on p and a primitive root g, which are public knowledge. Then, Alice chooses
a private key a ∈ {0, · · · , p − 2} and Bob choose a private key b ∈ {0, · · · , p − 2}. Then, Alice and Bob
publish their private keys, where Alice publishes ga and Bob publishes gb. Now, Alice calculates (ga)b = gab

and Bob calculates (gb)a = gab, where they both now have the same shared key. This shared key can now
be used for various private key cryptosystems.

In the quantum algorithm, take Ug |x⟩ = |gx⟩, all modulo p. Note that Ug can be done efficiently using
elementary gates. Moreover, we can do U2k

g = |g2kx⟩ efficiently by squaring repeatedly on g. Here, Ug |1⟩ = |g⟩,
U2
g |1⟩ = |g2⟩ , · · ·Up−1

g |1⟩ = |1⟩. Then, do a phase estimation on Ug. In the basis |1⟩ , |g⟩ , |g2⟩ , · · · , Ug looks

like


0 0 · · · 1
1 0 · · · 0
0 1 · · · 0
...

...
. . . 0

0 0 · · · 0

. Since Up−1
g = I, the eigenvalues satisfy λp−1 = 1, so the eigenvaluess are ωy where

ω = e2πi/(p−1) and y ∈ 0, 1, · · · , p−2. Lastly, the eigenstates are |ψy⟩ = 1√
p−1

∑p−1
x=0 ω

xy |x⟩. In fact, the Fourier
transform will diagonalize this matrix.
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• First, perform phase estimation of Ug on state |1⟩. We have

|1⟩ = 1√
p− 1

p−2∑
y=0

|ψy⟩ =
1

p− 1

∑
x,y

ωxy |gx⟩ = |1⟩ .

Then, phase estimation yields 2πy
p−1 and collapses the state to |ψy⟩, where we need m bits of precision with

2m ≫ p.

• Next, perform phase estimation with Uga and state |ψy⟩. Recall that the input is p, g, and ga. We get

Uga |ψy⟩ = ωay |ψy⟩ .

Then, phase estimation yields 2πay
p−1 , where ay is modulo p− 1.

From 2πy
p−1 and 2πay

p−1 , we can recover a, by dividing by a.
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21 Grover’s Algorithm
In the problems we’ve achieved quantum speedups so far, we’ve relied heavily on structure, such as periodicity.
However, a huge question in the field is about what kinds of problems can have quantum speedups, and whether
structure is necessary.

Guiding Question
What is the source of quantum speedups?

Symmetry or structure may be a source of quantum speedups, or it may instead simply be the "low-hanging
fruit" of the field.

Today, we will talk about an algorithm with much less structured input, which achieves a quadratic rather than
exponential speedup. That is, the quantum runtime is the square root of the classical runtime.

21.1 Circuit-SAT and the Oracle Problem
The input is a classical circuit C : {0, 1}n → {0, 1}, and CIRCUIT-SAT outputs whether there exists x ∈ {0, 1}n
such that C(x) = 1. Equivalently, CIRCUIT-SAT outputs

∨
x∈{0,1}n C(x), which is 1 if any of the C(x) = 1

and 0 if all of the outputs are zero.

In complexity theory, there are various classes of problems based on the runtime of the best algorithm to solve
them.

• A problem is in P if it can be solved in polynomial time on a classical deterministic computer

• A problem is in BPP if it can be solved in polynomial time on a randomized computer

• A problem is in BQP if it can be solved in polynomial time on a quantum computer

Moreover, a problem is in NP, which stands for nondeterministic polynomial time∗, if a solution to the problem
can be verified in polynomial time. For example, CIRCUIT-SAT is in NP: given some x ∈ {0, 1}n, it takes
polynomial time to verify that indeed C(x) = 1. In general, CIRCUIT-SAT can be solved in ≈ 2n· (circuit size)
time.

Although CIRCUIT-SAT cannot be solved quickly, a closely related problem can be, where the circuit C is not
presented as a bunch of gates, but rather an oracle providing the output of C for any input x. The oracle
problem OR, given a function f : {0, 1}n → {0, 1} as an input, outputs

∨
x f(x), which is the same as whether

there exists any x ∈ {0, 1}n such that f(x) = 1. The oracle version removes any possible structure, since f(x)
provides zero information about f(x′), as we do not have access to the underlying circuit. To simplify, we can
replace {0, 1}n with [N ] where N = 2n.

Guiding Question
How many queries are needed to determine OR?

In the deterministic case, N queries are required. In the randomized case, Θ(N) queries are required for constant
error.

21.2 Grover’s Algorithm
Grover proved an extremely general case where there is no structure required on the input. Unfortunately, this
achieves only a quadratic speedup.

Theorem 21.1 (Grover ’96)
Quantum computers can compute OR with O(

√
N) queries.

In fact, this is a lower bound; quantum computers cannot achieve better.
∗Not "not polynomial" time!
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Theorem 21.2 (BBBV ’94)
The lower bound for quantum computers are Ω(

√
N).

Thus, up to some constants,
√
N is both an upper and lower bound.

There are a lot of variants of this problem.

Definition 21.3
We call x marked, or a solution to the problem, if f(x) = 1 and unmarked if f(x) = 0.

A slightly stronger problem than OR would be "Find x such that f(x) = 1, or say that no x exists." Obviously,
if this problem can be solved, OR can automatically be solved. Moreover, if OR can be solved, this problem
can also be solved, using binary search for x. This takes

√
N +

√
N/2 +

√
N/4 + · · · = O(

√
N).

Let’s start with some ingredients.

Definition 21.4 (Phase Oracle)
The phase oracle is

Of = Ophasef =
∑
x

(−1)f(x) |x⟩ ⟨x| = I − 2P,

where P =
∑
x∈f−1(1) |x⟩ ⟨x| .

Example 21.5
If there is only a single w such that f(w) = 1, Of = I − 2P = I − 2 |w⟩ ⟨w|, which is ones on the diagonal
except −1 at (w,w).

Let the superposition state be |s⟩ = 1√
N

∑
x∈[N ] |x⟩.

Definition 21.6
The reflection operator is

Rs = 2 |s⟩ ⟨s| − I.

These operators can be written in terms of elementary gates. If N = 2n, then |s⟩ = H⊗n |0n⟩, and Rs =
H⊗n(2 |0n⟩ ⟨0n| − I)H⊗n.

Algorithm 21.7
Starting with |s⟩, we apply Of and then Rs, and then Of again, applied T times, then measure.

Very roughly, the amplitude starts at 1/
√
N , then applying RsOf changes the amplitude to roughly 3/

√
N ,

then applying RsOf again changes the amplitude to roughly 5/
√
N again, so overall it takes O(

√
N) time to

increase the amplitude to O(1).

Let M = |f−1(1)| be the number of marked inputs, |α⟩ = 1√
M

∑
xmarked |x⟩ and |β⟩ = 1√

N−M
∑
xunmarked |x⟩,

where ⟨α|β⟩ = 0.

Let p =M/N be the fraction of marked elements. We can write

|s⟩ = √
p |α⟩+

√
1− p |β⟩ .

Clasically, there are Θ(1/p) queries required. We have Of |α⟩ = − |α⟩ and Of |β⟩ = |β⟩. In the |α⟩ , |β⟩ basis,

Of =

(
−1 0
0 1

)
. Moreover, Rs = 2

( √
p√

1− p

)(√
p

√
1− p

)
− I =

(
2p− 1 2

√
p(1− p)

2
√
p(1− p) 1− 2p

)
.

Then,

RsOf =

(
1− 2p 2

√
p(1− p)

−2
√
p(1− p) 1− 2p

)
=

(
cos θ sin θ
− sin θ cos θ

)
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for some θ, as it takes the form of a rotation matrix. Here, θ = arcsin(2
√
p(1− p)).

We have
⟨α|s⟩ = √

p = sin θ/2, ⟨β|s⟩ =
√
1− p = cos θ/2.

If p ≪ 1, then
√
p(1− p) ≈ √

p, so θ ≈ sin−1 2
√
p ≈ 2

√
p, so we want to take T to be approximately π/2

θ ,
rounded.

If T is too large, "overrotating" is bad, which makes it worse. This is different from the classical case.

For an unknown number of marked elements, it suffices to take T = 1, 2, 4, 8, · · · ,
√
N .k

59



Lecture 22: Grover’s Algorithm with Phase Estimation

22 Grover’s Algorithm with Phase Estimation
An issue last time was that overrotation would make Grover’s algorithm fail again, if p is unknown. Grover’s

algorithm iterates RsOf =

(
cos θ sin θ
− sin θ cos θ

)
in |α⟩, the marked states, and |β⟩, the unmarked states. Here,

where p =M/N, θ = sin−1(2
√
p(1− p)) ≈ 2

√
p. One way to estimate p is by using phase estimation on RsOf .

The eigenvalues are e±iθ, since RsOf = eiθY = cos θI + i sin θY. Phase estimation will give us an estimate
θ̂ ≈ θ±O(2−m), using m bits of accuracy. This takes 2m times to yield m bits of precision, so the cost is O(2m).

Here, p = 0 or M/N , and θ = 0 or 2/
√
N/M if T ∼

√
N/M ∼ 1√

p , where the estimate is θ̂ ≈ θ ± O(1/T ),
taking cost O(T ). This is called the approximate counting algorithm.

Thenp̂ = sin2(θ/2) ≈ p, and dp̂/dθ̂ = 2 sin(θ̂/2) cos(θ̂/2) = sin θ̂ ≈ 2
√
p̂ ≈ √

p. Then p̂ ≈ p±O(2
√
p/T ), in this

case 1/N ±O(1/
√
NT ). Assume that M = N/2 or N/2 + 1 So we need T ≈ N .

The most general possible algorithm is, for M = 1,, where Ox |y⟩ = (−1)δx,y |y⟩,

· · ·

· · ·

|0⟩
U0 U1 UT

|0⟩ Ox Ox Ox

Then |ψxt ⟩ = UtOxUt−1Ox · · ·OxU0 |0⟩, where |0⟩ means many zeroes, and |ψt⟩ = UtUt−1 · · ·U0 |0⟩. The progress
measure is Dt =

∑
x∈[N ] || |ψxt ⟩ − |ψt⟩ ||2.

1. Dt ≤ 4t2 for t = 0, 1, · · · , T

2. Finding x perfectly: DT ≥ 2N − 2
√
N

3. Finding x with probability 1/2: Dt ≥ Ω(N)

We have
Dt+1 =

∑
x

||Ut+1Ox |ψxt ⟩ − Ut+1 |ψt⟩ ||2 ≤
∑
x

(||Ut+1Ox |ψxt ⟩ ||+ ||Ut+1 |ψt⟩ ||)2

=
∑
x

|| |ψxt ⟩ − |ψt⟩ ||2 +
∑
x

||(Ox − I) |ψt⟩ ||2 + 2
∑
x

|| |ψxt ⟩ − |ψt⟩ || · ||(Ox − I) |ψt⟩ ||.

Here, Ox = I − 2 |x⟩ ⟨x| and (Ox − I) |ψ⟩ = −2 |x⟩ ⟨x|ψ⟩. So then
∑
x ||(Ox − I) |ψt⟩ ||2 = 4

∑
x | ⟨x|ψt⟩ |2 = 4.

Using Cauchy-Schwarz on the last term yields
∑
x || |ψxt ⟩−|ψt⟩ ||·||(Ox−I) |ψt⟩ || ≤

√∑
x || |ψxt ⟩ − |ψt⟩ ||2

∑
x ||(Ox − I) |ψt⟩ ||2 ≤√

(4Dt).

≤ Dt + 4 + 2
√

4Dt.

Using induction, this shows that Dt ≤ 4t2. THis means that the progress measure doesn’t increase too quickly.
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23 BBBV LB for OR
Last time, we showed that Dt =

∑
x∈[N ] || |ψxt ⟩ − |ψt⟩ ||2 ≤ 4t2.

The setup is slightly different than in Grover’s algorithm:

• Run a unitary circuit UTOXUT−1 · · ·U0 |0⟩, without knowing x. Then, given a random x ∈ [N ], measure
and output whether x is marked, or nothing is marked.

However, we don’t get another run of the random oracle to check whether x is marked: we can only use the
state we already have. If the state we have provides enough information, we can determine whether x is marked
or not, even without running the oracle on x.

Now, we can analyze how this last step works. Suppose we measure in the |v1⟩ , · · · |vd⟩ basis, where d is the
total dimension of the quantum computer. Then, let pi = | ⟨vi|ψ⟩ |2.

Definition 23.1
The variational distance between probability distributions p and q is

1

2

∑
i

|pi − qi| =
1

2
||p− q||1.

Moreover, the usual norm can be denoted as√∑
i

|pi − qi|2 = ||p− q||2.

Then, we can consider the difference between two probability measures evaluated on events: maxE |p(E)−q(E)| ≤
1
2 ||p− q||1.

Example 23.2
Let p be the probability measure (0.2, 0.2, 0.1, 0, 0.5) and q = (0.3, 0, 0, 0.2, 0.5). Then, take E = {2, 3}.
Here, ||p− q||1 = 1

2 (0.1 + 0.2 + 0.1 + 0.2 + 0) = 0.3 and |p(E)− q(E)| = 0.3. Considering E = {1, 4} yields
|p(E)− q(E)| = 0.5− 0.2 = 0.3.

Analogously, consider states |α⟩ , |β⟩ measured in an orthonormal basis |v1⟩ , · · · , |vd⟩, where ai = | ⟨vi|α⟩ |2 and
bi = | ⟨vi|β⟩ |2. Then,

1

2
||a− b||1 ≤ 2|| |α⟩ − |β⟩ ||2

=
∑
i

(| ⟨vi|α⟩ |+ | ⟨vi|β⟩ |) (| ⟨vi|α⟩ |+ | ⟨vi|β⟩ |)

≤
√∑

i

(| ⟨vi|α⟩ |+ | ⟨vi|β⟩ |)2
∑
j

(| ⟨vj |α⟩ |+ | ⟨vj |β⟩ |)2,

using Cauchy-Schwarz. Using the triangle inequality,
∑
i(| ⟨vi|α⟩ |+ | ⟨vi|β⟩ |)2 ≤

∑
i | ⟨vi| (|α⟩ − |β⟩)|2. Using

the fact that the vi form an orthonormal basis, this is = || |α⟩ − |β⟩ ||2.

Thus, we get

=
∑
j

(| ⟨vj |α⟩ |+ | ⟨vj |β⟩ |)2

=
∑
j

| ⟨vj |α⟩ |2 + | ⟨vj |β⟩ |2 + 2| ⟨vj |α⟩ ⟨vj |β⟩ |

≤ 2 + 2

= 4.
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Suppose the success probability is at least 1/2 for at least 1/2 of the x’s:

DT ≥ N

2

1

2

1

42
= cN,

and
DT ≤ 4T 2.

So T ≥ Ω(
√
N).

A related problem: We have f : [N ] → S. Is f one-to-one or does there exist x ≠ y such that f(x) = f(y)?
Element distinctness is Θ(N2/3).

The collision problem is whether f is 1-1 or 2-1, which is Θ(N1/3).

Simon’s problem is O(logN), since N is the size of the input, N = 2n. Since there is much more structure, an
exponential speedup is achieved.

Another problem with no speedup is parity, for f : [N ] → Z2, which is
∑
x∈[N ] f(x). This is Θ(N).

23.1 Quantum Dynamics and Simulation
In terms of quantum mechanics, some quantities in the world are like qubits, such as a spin-1/2 particle, in C2.
There are also spin 1 particles, which are described by a 3-level system.

Given a particle on an interval [0, L], there is a "position" and a "momentum." Restricting the particle to
a lattice with spacing a = L/N , the position is in CN . A superposition of different positions provides the
momentum by taking the QFT. Given a superposition of position ψ0 |0⟩+ · · ·+ ψN−1 |N − 1⟩, the momentum
is UQFT (ψ0 |0⟩+ · · ·+ ψN−1 |N − 1⟩) = ψ̃0 |0⟩+ · · ·+ ψ̃N−1 |N − 1⟩ .

A state with momentum p can be represented as 1√
N
(1, ωp, ω2p, · · · , ωp(N−1)).

For a particle in 3D, we have Cn ⊗ Cn ⊗ CN .
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24 Quantum Dynamics & Hamiltonian Simulation
Today, he handed out leftover Halloween candy.

24.1 Introduction and Setup
Let’s first do a quick review of how everything in the universe works. One of the most important applications
of quantum computing is simulating quantum dynamics in the physical world. Natural systems evolve similarly
to how quantum circuits operate, where various operations are applied to a state that changes over time. One
important difference is that in real life, time is continuous, while for quantum circuits, time is discrete. Another
important difference is that in real life, there is a spatial dependence of operations. For example, forces depend
on distance or location.

For this setup, we make a few assumptions as axioms, in order to obtain a bit more structure. In discrete
time, linear operators U act to take |ψ⟩ → U |ψ⟩. In continuous time, we can also assume linearity, so
d
dt |ψ(t)⟩ = f(|ψ(t)⟩) = A |ψ(t)⟩, where A is a linear operator.∗ Moving the derivative into the bra,

d

dt
⟨ψ| = ⟨ψ|A†.

Thus, as the norm should not change,

0 =
d

dt
⟨ψ|ψ⟩ = ⟨ψ|A|ψ⟩+ ⟨ψ|A†|ψ⟩ = ⟨ψ|(A+A†)|ψ⟩ .

Therefore, since this equation holds for all values of ψ, A+A† = 0.

Definition 24.1
If A† = −A, then A is skew-Hermitian.

Thus, operators on continuous quantum states A are skew-Hermitian.

Proposition 24.2
Skew-Hermitian matrices A can be written as A = −iH where H = H†, called the Hamiltonian, is
Hermitian.

Writing A = −iH, the equation for the continuous time evolution of a quantum state,

d

dt
|ψ(t)⟩ = −iH |ψ(t)⟩ ,

which is the very important Schrodinger equation.

Proposition 24.3
The Hamiltonian measures energy, in that an eigenstate |φE⟩ such that H |φE⟩ = E |φE⟩ has energy E.
Moreover, ⟨ψ|H|ψ⟩ is the average energy of ψ, decomposed into eigenstates.

Looking at units of d
dt |ψ(t)⟩ = −iH |ψ(t)⟩, on the left is frequency, and on the right is energy. This is similar to,

using the speed of light, E = mc2, which means that energy and mass are "equivalent." Using the Schrodinger
equation predicts that energy and frequency are also "equivalent" or have a "fundamental relationship." In fact,
this fundamental relationship is given by Planck’s constant, which is a very small number, which reflects the
fact that quantum phenomena occur at very small scales.

Definition 24.4
Planck’s constant is ℏ ≈ 1.055 · 10−35J · s = J

Hz .

Thus, Schrodinger’s equation is sometimes written as d
dt |ψ⟩ =

−iH
ℏ |ψ⟩, but in this class we will use units such

that ℏ = 1. We can solve the differential equation.
∗From now on, we may simply write |ψ⟩ rather than |ψ(t)⟩.
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Proposition 24.5
The solution to the Schrodinger equation given an initial condition |ψ(0)⟩ is |ψ(t)⟩ = e−iHt |ψ(0)⟩.a

aHere we take the matrix exponential.

Corollary 24.6
In an eigenbasis, given an initial condition |ψ(0)⟩ =

∑
E cE |φE⟩, the solution at time t is

|ψ(t)⟩ =
∑
E

cEe
−iEt |φ(t)⟩ = e−iHt |ψ(0)⟩

Theorem 24.7 (Relationship between Hermitian and Unitary Matrices)
If H = H†, then e−iHt is unitary.

If H = I, then the solutions will be |ψ(t)⟩ = e−it |ψ(0)⟩, which is simply an overall phase. Overall phases don’t
matter, only phase differences, so identity terms in H can be ignored.

24.2 Examples of Quantum Systems
This is all a bit abstract, so we can look at some examples.

Example 24.8 (Spin-1/2 Particle)
Consider a single spin-1/2 particle. The dimension is d = 2. Any 2×2 Hermitian matrix can be written as
H = v⃗ · σ⃗ = v1σ1 + v2σ2 + v3σ3, a linear combination of the Pauli matrices. Then, e−iHt = cos(|v⃗|t)I −
i sin(|v⃗|t) v⃗|v⃗|⃗ ·σ.

Consider a chain of spin-1/2 particles.

Example 24.9 (TFIM)
One model for a chain of spin-1/2 particles is the transverse-field Ising model, where all the particles are
aligned in one direction. Suppose H = −

∑n
i=1 ZiZi+1, where Zi is a Pauli matrix. Then, the eigenvalues

of Zi are 1 and −1 and the eigenvalues of ZiZi+1 are 1 for eigenvectors that look like |0⟩ |0⟩ and |1⟩ |1⟩
and −1 for eigenvectors |0⟩ |1⟩ and |1⟩ |0⟩ . The transverse-field model adds a field in the X direction with
strength Γ, so that

H = −
n∑
i=1

ZiZi+1 − Γ

n∑
i=1

Xi.

Example 24.10 (Heisenberg Model)
Another model is H = ±

∑n−1
i=1 SWAPi,i+1. In the ferromagnetic model, H = −

∑n−1
i=1 SWAPi,i+1 and

alignment of the spins is energetically favorable. The antiferromagnetic model has the opposite sign, so
that anti-alignment is favored.
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Example 24.11 (Particle in 1-D)
Consider a chain of N particles spaced by a in one dimension, as in last class, where we take a lattice on
a line with spacing a and length L = Na. We attach some "energy" to each point in space, such as for a
gravitational field. The potential energy at a point x is then

∑N−1
x=0 V (x) |x⟩ ⟨x| . Also, the kinetic energy

term is 1
2ma2

∑N−1
x=0 |x⟩ ⟨x+ 1|+ |x⟩ ⟨x− 1|, where the |x⟩ ⟨x| terms become the identity so we omit them.

Then, the Hamiltonian is

H =

N−1∑
x=0

V (x) |x⟩ ⟨x|+ 1

2ma2

N−1∑
x=0

|x⟩ ⟨x+ 1|+ |x⟩ ⟨x− 1| .

This couples a diagonal term with an "adjacent" term. This is diagonalized by the Fourier transform,
so F (

∑
x |x⟩ ⟨x+ 1| + |x⟩ ⟨x− 1|)F † =

∑N−1
z=0 cos(2πz/N) |z⟩ ⟨z| , which allows us to compute this on a

quantum computer.

On a quantum computer, we can implement e−iHt by |x⟩ 7→ |x⟩ |V (x)⟩ 7→ e−iV (x)t |x⟩ |V (x)⟩ 7→ e−iV (x)t |x⟩ .
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25 Hamiltonian Simulation
Today, we will talk about Hamilton simulation with applications to ground-state energy estimation and adiabatic
algorithm.

Recall from last time the Schrodinger equation

d

dt
|ψ⟩ = −iH |ψ⟩

with solution
|ψ(t)⟩ = exp(−iHt) |ψ(0)⟩ .

Proposition 25.1
If A and B commute, for the matrix exponential, eA+B = eAeB .

For example, if A = X1 + X2 + · · · + Xn, then e−iAt = e−itX1 · · · e−itXn , since the Xi are each on different
systems so they commute.

Definition 25.2
The commutator is [A,B] = AB −BA.

The commutator is zero if A and B commute. Moreover, the commutator works nicely with the tensor product.

Proposition 25.3
If [A,C] = 0 and [B,D] = 0, then [A⊗B,C ⊗D] = 0.

Similarly, if B = Z1Z2 + Z2Z3 + · · ·+ Zn−1Zn, then e−iBt = e−itZ1Z2 · · · e−itZn−1Zn .

To determine the solution where the Hamiltonian is a sum of two actions in general, we can expand using the
Taylor series.

Theorem 25.4 (Trotter-Suzuki)
If H = A + B, then e−iHt and e−iAte−iBt agree to the first order. In particular, e−iHt − e−iAte−iBt =
t2

2 [A,B] +O(t3).

Proof. If H = A+B, then we can write

e−iAte−iBt =

(
I − iAt− A2t2

2
+ · · ·

)(
I − iBt− B2t2

2
+ · · ·

)
= I − it(A+B)− t2

2
(A2 + 2AB +B2) +O(t3).

However, e−iHt = I − it(A+B)− t2

2 (A
2 +AB +BA+B2) +O(t3).

Definition 25.5
The operator norm of an operator A is

||A|| = ||A||op = ||A||∞ = ||A||2→2 = max{||A |ψ⟩ || : || |ψ⟩ || = 1.}

Equivalently, if A is diagonalizable, then ||A|| = max{|λ| : λ is an eigenvalue of A}.

Given a goal operator U , if Ũ is achieved, then ||(U − Ũ) |ψ⟩ || ≤ ||U − Ũ ||. That is, the worst-case error on any
input is bounded above by the operator norm.

66



Lecture 25: Hamiltonian Simulation

Proposition 25.6
The operator norm satisfies:

• Nonnegativity: ||A|| ≥ 0

• Triangle inequality: ||A+B|| ≤ ||A||+ ||B||

• Unitary invariance: If U is unitary, then ||UA|| = ||A|| = ||AU ||

• Hybrid argument: If Ui are unitary, ||U1 · · ·UT − Ũ1 · · · ŨT || ≤ ||U1 − Ũ1||+ · · ·+ ||UT − ŨT ||

Example 25.7
Consider the case of the spin chain where A = X1 + · · · + Xn and B = Z1Z2 + · · ·Zn−1Zn. Then
||A|| = n and ||B|| = n as well. Next, [A,B] =

∑
i,j [Xi, ZjZj+1], where the commutator is 0 if i ̸= j, j + 1.

Therefore, ||[A,B]|| = O(n). Then the Trotter error, splitting time into r intervals, is ||(e−i(A+B)t/r)r −
(e−iA(t/r)e−iB(t/r))r|| is t2

r ||[A,B]||+ · · · . The error is thus ε = t2

r O(n) and so the time scaling factor must
be ∼ t2r

ε , for a desired error ε.

To get a tighter error bound, a higher-order Trotter-Suzuki formula can be used. In general, for a pth order
approximation, the timescale for an error ε will be roughly r ∼ t1+1/p

ε1/p
. Then minp

Spt1/p

ε1/p
∼ exp(O(

√
log t/ε)).
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26 Missing
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27 Quantum Error Correction

27.1 Review: Adiabatic Theorem

Consider reparametrization H(s) = H(t/T ), where we rescale, and making sure that T ≫
(

1
mins E1(s)−E0(s)

)2
so that we stay in the ground state.

For the 1-qubit case, the Landau-Zener transition provides a good example.

Example 27.1 (Landau-Zener Transition)
Consider H(s) = Z + sX, where s ∈ R. The eigenvalues are E0, E1 = ±

√
1 + s2.a

As s→ ∞, H → X, and the eigenvectors are |+⟩ , |−⟩, and as s→ −∞, H → −X, and the eigenvectors are
|+⟩ , |−⟩ .

If you move very slowly, you stay in the same energy level but move to a different state, and if you move
very quickly, you stay in the same state, which is at a different energy level.

aIn fact, the eigenvalues of aI + bX + cY + dZ = a±
√
b2 + c2 + d2.

27.2 Adiabatic Optimization
Consider H0 = −

∑n
i=1Xi, with an initial ground state |+⟩⊗n. Then, H1 = diag(f) =

∑
z∈{0,1}n f(z) |z⟩ ⟨z| .

The ground state encodes the solution to an NP-complete problem, |z⟩ for z = argmin f(z). Then, the ground
state of (1− s)H0 + sH1 = H(s).

We can minimize:
min
|ψ⟩

⟨ψ|H|ψ⟩ = s
∑
z

|ψz|2f(z) + (1− s) ⟨ψ|H0|ψ⟩ .

Here, nI +H0 =
∑n
i=1 I −Xi = 2

∑n
i=1 |−⟩ ⟨−|, as X = |+⟩ ⟨+| − |−⟩ ⟨−|. Then,

1

2
⟨ψ|nI +H0|ψ⟩ =

n∑
i=1

∑
z∈{0,1}n

|ψz − ψz+ei |2,

where ei = (0, · · · , 0, 1, 0, · · · , 0). That is, z + ei differs from z by a bit-flip in one position. Here we use
|| ⟨−|i |ψ⟩ ||2 =

∑
z |ψz − ψz+ei |2.

The classical analogue is "simulated annealing," taking inspiration from cooling metals, where the goal is to
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minimize over a probability distribution, encouraging it to spread out:

min
P


∑
z

p(z)f(z)− T︸︷︷︸
temp

∑
z

p(z) log
1

p(z)︸ ︷︷ ︸
entropy of p

 .

The entropy is another way of measuring how "spread out" the probability distribution is, compared to a more
"local" concept in the quantum case.

Adiabatic optimization and simulated annealing are two heuristics that are used for optimization problems.

27.3 Preparing Ground States
Another way to use this is for ground state estimation, which is NP-hard. One example is that a molecule
at room temperature should have electrons generally at ground state. One way of finding ground states is
"simulating nature" and asking molecules to be a ground state, and finding their electron states. To prepare
ground states, take H0 = T to be a part of the full Hamiltonian H1 = T + V . It’s easy to diagonalize T or V ,
but not their sum. Then, in the adiabatic framework, we can start at T and gradually increase V and hope
that the ground state is still a ground state of sT + (1− s)V .

Consider H on n qubits, so there are O(n) terms. Suppose each term has energy O(1). Then the spectrum
goes from O(n) to −O(n), and there are 2n eigenvalues, so "small gaps" between eigenvalues are expected. The
only way to satisfy the adiabatic condition is to have a large gap, which is more likely towards the ends of the
spectrum.

27.4 Error Correction
So far, we have assumed that all quantum gates are perfect — however, in reality, there is always some error
or noise. Error correction solves many issues: it allows the route to quantum computing to be feasible, given
noise, and also allows for "digital" or "discrete" quantum computing.

Classical error correction was already pretty amazing.

Provided a message, we encode the message, noise strikes and we decode the message again, hoping that the
message can still be recovered given that there is noise. We do this by adding redundancy.

There are various ways of formalizing this. For example, for randomized errors, recall the binary symmetric
channel, where we flip each bit with probability p. Another way of analyzing this is by taking worst-case analysis,
assuming that at most np bits are flipped.

Definition 27.2
The message is composed of logical bits, and the encoded message is composed of physical bits.

One example is the repetition code. One example is the repetition code. One example is the repetition code.

Example 27.3 (Repetition Code)
The encoding takes 0 7→ 000, 1 7→ 111, and the decoder is majority vote (given 010, guess that the original
bit was 0.) The probability of a logical error, or an error in decoding to the original logical bit of the message,
is the probability that 2 or 3 bits are flipped, which is 3p2 + p3 for a binary symmetric channel. Thankfully,
this probability of a logical error is O(p2), which is smaller than p for sufficiently small p.
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In fault-tolerant computing, we consider cases where encoding and decoding also have some error probability.
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28 Classical & Quantum Error Correction

28.1 Repetition Code
Recall the repetition code.

Example 28.1
Encode k bits, with noise from a binary symmetric channel with constant p, say 1/10. In the ℓ-bit repetition
code, x1 · · ·xk 7→ xℓ1 · · ·xℓk, where k logical bits map to n = kℓ physical bits.

Consider the probability of error, the probability that some xi is decoded incorrectly:

Pr[decode xi wrong] = Pr[at least ℓ/2 bits are flipped by noise]

= Pr

[
Bin(ℓ, p) ≥ ℓ

2

]
∗

It turns out that for the binomial distribution, this probability is approximately exponentially shrinking with ℓ:

Pr[decode xi wrong] ≈ e−cℓ,

where c > 0 is some constant depending on p. That is, the error probability decreases exponentially with the
block length — that is, the more bits, the more reliable the code.

Unfortunately, this is only the probability of a particular bit is wrong — in general, for k bits, we want all k
bits to be correct. Thus, the probability of decoding a particular xi wrong should be at most 1/k. That is,

Pr[any bit is wrong] ≈ ke−cℓ,

so we need ℓ ∼ log k in order for this probability to be constant. In this case, n = kℓ ∼ k log k.

Definition 28.2
The code-rate is k/n.

Shannon found that it’s possible to both have constant probability of error, and constant rate of transmission.

28.2 General Error-Correcting Codes
First, we ignore efficiency and analyze the existence of codes with certain properties. In general, consider the
space {0, 1}n, and let C be a set of codewords C ⊆ {0, 1}n. Let |C| = 2k.†

Definition 28.3
Let dist be the Hamming distance, which is the number of positions where two codewords differ.

For example, dist(00100, 11100) = 2.

Definition 28.4
Let d be the code distance, where

d = min
x,y∈C,x̸=y

dist(x, y).

There are two kinds of errors: a bit is replaced by a ?, where we know that this bit has been corrupted. A
harder kind of error is a bit-flip error, where a 1 turns into a 0, or vice versa, which is more difficult because we
don’t necessarily know where the error occurred.

Proposition 28.5
The code C can correct d− 1 erasure errors or ⌊d−1

2 ⌋ bit-flip errors.

†We ignore the "map" from messages to codewords, since we want to analyze the error-correcting properties of the code, or set
of codewords, itself.
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Example 28.6
Consider the ℓ = 5 repetition code. Let C = {00000, 11111}. Here, d = 5, so given 4 erasure errors, such as
in ???0?, it’s still clear that the original codeword was 00000. Moreover, given 2 bit-flip errors, such as in
10110, it’s still clear that the original codeword was 11111.

Definition 28.7
A good code family satisfies limn→∞

k
n > 0, and limn→∞

d
n > 0.

For the repetition code, worst-case errors are much worse than random or average-case errors.

One of Shannon’s insights is that it’s much better to encode a string of bits, than each bit one-by-one.

Example 28.8 (Parity Code)
Take x1 · · ·xk 7→ x1, · · · , xk, x1 + · · ·xk mod 2, where we add one parity bit. The set of codewords C is
{x ∈ Fn2 : (1, · · · , 1) · x = 0}, which is the set of strings with parity zero. Then, the number of bits we can
encode is k = n− 1, and d = 2.

This is an example of an important family of codes called linear codes.

Definition 28.9
A linear code consists of codewords C that form a k-dimensional subspace of Fn2 and a linear encoding
E : Fk2 → Fk2 .

Definition 28.10
An [n, k, d]-code is a code with n physical bits, k logical bits, and distance d.

The parity code is an [n, n− 1, 2]-encoding.

Example 28.11 (Hamming code)
Codewords are 7 bits long (in general, codewords can be 2s− 1 bits long.) Denote the original 4-bit message
to be (x3, x5, x6, x7), where we avoid indices that are powers of 2. We map this by taking

(x3, x5, x6, x7) 7→ (x3 + x5 + x7, x3 + x6 + x7, x3, x5 + x6,+x7, x5, x6, x7),

where we take the binary expansions 3 = 011, 5 = 101, 6 = 110, and 7 = 111, and create parity check bits
considering the other bits that have a 1 in the appropriate binary position. Flipping one bit makes 2-3
parity bits mismatch, and flipping two bits makes at least one parity check bit mismatch. In fact, this code
can thus detect up to 3 errors. The Hamming code is an [7, 4, 3]-encoding.

This is another linear code.

28.3 Linear Codes
Linear codes are as good as any other code that people have found so far. In general, linear codes can be
described by a set of linear constraints. Given a message m ∈ Fk2 , encode m → mG, where G is a matrix in
Fk×n2 . We can also define a parity check matrix H ∈ Fn×(n−k), since there are n − k parity check bits. We
should satisfy GH = 0, so mGH = 0. That is, for any valid encoding, mGH should be zero, or pass all the
parity checks. Given an error e, we get mG = e. Then the syndrome is (mG+ e)H = mGH + eH = eH. If the
distance is high enough, and the error is small enough, it is possible to reconstruct what e is.

The problem "find e to minimize the number of 1s in e such that eH = syndrome" is NP-complete. That is,
finding the smallest "weight" error, given the syndrome, for a general code, is hard. A code provided by an
adversary is likely hard to decode, but as a code designer, don’t pick a hard code.
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28.4 Quantum Codes
The quantum code |ψ⟩ → |ψ⟩ ⊗ |ψ⟩ ⊗ |ψ⟩ is both impossible, due to no-cloning, and difficult to decode. The
arguments against quantum error correction include:

• No-cloning

• Measurement collapse

• Continuous errors
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29 Quantum Error Correction
Recall the issues with quantum error correction: no-cloning, measurement collapse, and continuous errors. The
solution is isometric encoding. For square matrices, unitaries are isometric, but there are rectangular isometric
matrices as well that satisfy E†E = I, which increases dimension. If an isometry E is rectangular m×n,then
the rank of E is min(m,n), so E†E = I, but EE† ̸= I.

29.1 3-Qubit Bit-Flip Code
Let E |0⟩ = |000⟩ , E |1⟩ = |111⟩. Then, E†E = |0⟩ ⟨0|+ |1⟩ ⟨1| = I2, but EE† = |000⟩ ⟨000|+ |111⟩ ⟨111| ≠ I8.
Thus E is an isometric encoding.

In fact, this code can correct one of {I,X1, X2, X3}.

Definition 29.1
The codespace of an isometric encoding E is imE.

The codespace is C = imE = Span{|000⟩ , |111⟩}, where E(a |0⟩+ b |1⟩) = a |000⟩+ b |111⟩. We have

X1C = Span{|100⟩ , |011⟩}, X2C = Span{|010⟩ , |101⟩}.

The encoding circuit is

a |0⟩+ b |1⟩

a |000⟩+ b |111⟩|0⟩

|1⟩

To decode with no errors, we can take

a |000⟩+ b |111⟩

a |0⟩+ b |1⟩

|1⟩

|0⟩

Assuming some error X2, we get

a |000⟩+ b |111⟩

a |0⟩+ b |1⟩

X |1⟩

|0⟩

which does not affect the first qubit. The error X3 will be equivalent.

Assuming some error X1, we get

a |000⟩+ b |111⟩

X a |1⟩+ b |0⟩

|1⟩

|1⟩

which provides the qubit a |1⟩+ b |0⟩ in the first system rather than the desired a |0⟩+ b |1⟩. Thus, in general,
to correct for X1, X2, or X3, we can take the decoding gate
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a |000⟩+ b |111⟩

a |1⟩+ b |0⟩

Mathematically, this works, but this leaves an unprotected qubit in the first wire, which is vulnerable to noise.
We managed to measure where the error was without collapsing the data, and it turns out that measurement
collapse acts on continuous error to produce a discrete set of errors. The solution to measurement collapse is
that we learn about errors, not logical qubits.

The solution to continuous errors is to collapse it by syndrome measurement. For example, with error eiθX in
the first bit, taking |ψ⟩ = a |0⟩+ b |1⟩ , here we get

E |ψ⟩ = a |000⟩+ b |111⟩

eiθX

cos θ |ψ⟩ ⊗ |00⟩+ i sin θX |ψ⟩ ⊗ |11⟩

The syndrome will collapse down to one of the errors, which will be able to be corrected.

Thus, discrete errors are sufficient for any linear combination.

In general, we get

Xe1
1 X

e2
2 X

e3
3 E |ψ⟩

|0⟩
e1 + e2

syndrome
|0⟩

e2 + e3

Measuring yields the syndrome, which is equivalent to parity checks (1, 1, 0) and (0, 1, 1). Based on the error
correction syndrome, we get 00 → I, 01 → X3, 10 → X1, 11 → X2. This is the same as the classical case.

However, we may still have Z or phase errors. Take E |0⟩ = H⊗3 |000⟩ = |+++⟩ and E |1⟩ = |− − −⟩.
Then, Z1C = Span{|−++⟩ , |+−−⟩}, and so on, and we can similarly correct {I, Z1, Z2, Z3}. We have
Zi(a |000⟩ , b |111⟩) = a |000⟩− b |111⟩ = EZ(a |0⟩+ b |1⟩), so X errors take probabilities p→ 3p2 = O(p2), while
Z errors take p→ 3p = O(p).

29.2 9-Qubit Shor Code
This leads us to the 9-qubit Shor code. Let Ebf be the 3-qubit bit-flip encoding and Ephase be the 3-qubit
phase-flip encoding. We concatenate the bitflip and phase flip encodings. We have an "outer code" and an
"inner code"
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a |0⟩+ b |1⟩

Ephase

Ebf

Ebf

Ebf

Since Ebf |±⟩ = |000⟩±|111⟩√
2

, this yields

a

(
|000⟩+ |111⟩√

2

)⊗3

+ b

(
|000⟩ − |111⟩√

2

)⊗3

.

In fact, the 9-qubit Shor code can correct any single-qubit error in {I,X1, X2, X3, Y1, Y2, Y3, Z1, Z2, Z3}.

1. Decode each 3-qubit block and find the X errors, then output 3 qubits

2. Decode these 3 qubits using the phase flip code

A Y -error is simply the product of one X and one Y error, so it can also be corrected.
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30 Missing
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31 CSS Codes, Continued

31.1 CSS Codes
Today, we will finish covering the theory of CSS codes, which are inspired by classical linear codes, and cover
two important examples, the toric code and stabilizer codes.

Let C2 be any linear code, or a subspace of Fn2 . Let d2 = dimC2. Consider H⊗n |a+ C2⟩. The Hadamard gate
can be thought of as the 2-dimensional Fourier transform. A Fourier transform of a translation becomes a phase
shift, and the Fourier transform of a uniform superposition becomes a delta function. Therefore, we expect
H⊗n |a+ C2⟩ to map to the orthogonal subspace, which we can compute.

H⊗n |a+ C2⟩ = H⊗n2−d2/2
∑
x∈C2

|a+ x⟩

= 2−(n+d2)/2
∑

y∈{0,1}n

∑
x∈C2

(−1)y·(a+x) |y⟩

= 2−(n+d2)/2
∑

y∈{0,1}n

(−1)y·a
∑
x∈C2

(−1)y·x |y⟩ .

To compute the sum over x, consider two cases:

• If y ∈ C⊥
2 , then x · y = 1 for all x ∈ C2, so

∑
x∈C2

(−1)x·y = |C2| = 2d2 .

• If y /∈ C⊥
2 , there exists z ∈ C2 such that y · z = 1. Note that w 7→ w + z is a bijection on C2, so

z + C2 = C2. Thus,
∑
x∈C2

(−1)x·y =
∑
x(−1)(x+z)·y = (−1)z·y

∑
x(−1)x·y = −

∑
x∈C2

(−1)x·y, which
implies that

∑
x∈C2

(−1)x·y = 0.∗

Thus, we get

H⊗n |a+ C2⟩ = 2−n/2+d2/2
∑
y∈C⊥

2

(−1)a·y |y⟩ .

We have 2−(n−d2)/2 = 1√
|C⊥

2 |
, and (−1)a·y |y⟩ = Za |y⟩, so this is

= Za |C⊥
2 ⟩ .

Example 31.1

Consider H⊗4 |C2⟩ = |C⊥
2 ⟩, where C2 = Span



1
0
0
0

 ,


0
1
0
0


, and C⊥

2 = Span



0
0
1
0

 ,


0
0
0
1


. Then,

|C2⟩ = 1
2 (|0000⟩+ |0100⟩+ |1000⟩+ |1100⟩) = |++ 00⟩, and |C⊥

2 ⟩ = |00 + +⟩.

Moreover, we have |a+ C2⟩ = Xa |C2⟩†, so

H⊗nXa |C2⟩ = (H⊗nXaH⊗n)H⊗n |C2⟩ = Za |C⊥
2 ⟩ .

31.2 Z-Error Correction
We try to bring quantum error correction into the realm of classical error correction. We assumed that C1 could
correct X-errors, and C⊥

2 could correct Z-errors.

We have CSS(C1 : C2) = Span{|x+ C2⟩ : x ∈ C1}, and H⊗nCSS(C1 : C2) = CSS(C⊥
2 : C⊥

1 ). We claim that
CSS(C1 : C2) can correct X errors like C1 and correct Z errors like C⊥

2 .

• Start with a codeword
∑
a∈C1

ψa |a+ C2⟩.‡

∗This is a similar argument as to why the sum over roots of unity is zero, since we are summing over a group.
†Note that Xa |b⟩ = |a+ b⟩, where + is considered in Fn

2 .
‡There is some redundancy here, as the same term may appear multiple times in the sum, which is fine. Recall that a+ C2 =

a′ + C2 if and only if a− a′ ∈ C2, where a− a′ = a+ a′ for F2.
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• Now, consider a Zb error, which gives us
∑
a∈C1

ψaZ
b |a+ C2⟩.

• Applying the Hadamard yields
∑
a∈C1

H⊗nψaZ
b |a+ C2⟩ =

∑
a∈C1

ψaH
⊗nZb |a+ C2⟩. Like we did with

the X, we move the Hadamard past the Z-error:∑
a∈C1

H⊗nψaZ
b |a+ C2⟩ =

∑
a

ψa(H
⊗nZbH⊗n)(H⊗n |a+ C2⟩) =

∑
a

ψaX
bZa |C⊥

2 ⟩ .

When measuring in the standard basis, the only effect is from Xb, which brings us back to the realm of
classical error correction. Using parity checks and checking the syndrome as usual, we can apply classical
error-correction techniques.

Adding ancilla qubits, we do CWOTS, where we get
∑
a ψaX

bZa |C⊥
2 ⟩ |bH⟩, where the second register is

the syndrome and H is the parity check matrix of C⊥
2 . This is analogous to our X-error correction. We

inherit the guarantee from classical codes: assuming that b is correctable by C2, we can learn b from the
syndrome and correct it by applying Xb, undoing the error, and apply H⊗n again to bring the code state
back to where it started.

A big goal in error correction is self-correcting quantum memory. A classical analogy is the magnetic region in
the memory of a computer. In a ferromagnet, each bit wants to point in the same direction of its neighbors,
and if one of the bits is accidentally flipped, it’s more energetically favorable to flip back to its neighbors.

31.3 Examples
We can look at some examples of CSS codes.

Example 31.2 (Shor Code)

In fact, the Shor code is an example of a CSS code. We have |0L⟩ , |1L⟩ =
(

|000⟩±|111⟩
2

)⊗3

. Modifying this
a little, we take |0⟩ 7→ |v0⟩ = |+++⟩ + |− − −⟩, where only the even Hamming weights will contribute
so we get |v0⟩ = |000⟩+|110⟩+|101⟩+|011⟩

2 , and |1⟩ 7→ |v1⟩ = |+++⟩−|−−−⟩
2 , so only the odd Hamming weights

contribute: |v1⟩ = |001⟩+|010⟩+|100⟩+|111⟩
2 . Now, we let |0L⟩ = |v0⟩⊗3 and |1L⟩ = |v1⟩⊗3

.

Example 31.3 (Toric Code)
Consider a torus, which can be drawn as a square with the sides identified.

Now, create a grid and place a qubit on each edge. One feature of a code is LDPC, which stands for low
density parity check, and means that each parity check does not check many bits. Another feature is for a
code to be spatially local, where qubits only depend on nearby qubits. Next time, we will finish discussing
the toric code.
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32 Toric Code

32.1 Toric Code
The toric code is on a torus, which we can identify with a square with edges identified. We create an L×L grid.
Let V be the L2 vertices, E be the 2L2 edges, and F be the L2 faces. Then, take n = 2L2 qubits on the edges.

We have CSS(C1 : C2) = Span{|a+ C2⟩ : a ∈ C1}, where C1 ⊇ C2. We can index by the edges to get
FE2 = F2L2

2 = Fn2 . Then, C1 = {x ∈ FE2 such that ∀v ∈ V,
∑
e∼v V = 0.

In physics, this is a gauge condition and the toric code is Z2-gauge theory.

Draw an edge where xe = 1; this is an example of something that satisfies these constraints. We have closed
curves, which can be contractible or non-contractible.

Now, let C2 = Span{ for all f ∈ F}.

The set C2 includes contractible loops, as well as pairs of horizontal or vertical non-contractible loops. So

. We can have logical X operators, which act on edges,
and logical Z operators, which act on faces.
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Figure 1: C1

Figure 2: C2
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Let d be the distance, which is the weight of a non-identity logical operator. The weight of an operator is the
number of nonzero qubits. So d = L ∼

√
n.

Let’s considerX errors. Given an X error, we can see their endpoints. The vertices correspond to the constraints
(constraints are satisfied for each vertex).

The syndrome is the set of parity checks that are violated, where the parity checks are on each vertex. From
the "unhappy" vertices, we can find edges to fill in the path between them, using the shortest possible path by
assuming that there are "few" or "sparse" errors.

Suppose in reality that there were three X errors, so we have two endpoints with a distance of three, and we
corrected it using three X errors, but on the wrong path between the endpoints. Since the wrong path and the
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right path of X errors actually have the same length, it’s ambiguous which has fewer errors. It turns out that
the right path (which we didn’t correct) and the wrong path (which we wrongly corrected) form a loop, and in
fact since the cosets of |C2⟩ are invariant under closed loops, it doesn’t actually matter which path we used. So
as long as we pair the right endpoints, it doesn’t matter what loops we use to close them.

32.2 Self-Correcting Memory
This is a more technically vague ramble that we will discuss now, in a very broad sense.

In a self-correcting classical memory, let the energy be the number of parity checks violated. The code space
has zero energy and more incorrect parity checks have higher energy. Then the lowest energy state is the code
space. (This is how ferromagnetism works, which is essentially a repetition code. If a bit has neighbors pointing
up, it will have lower energy if it also points up, so if the bit is wrongly flipped to down, it is likely to flip back
to up, which is a lower-energy state.) In two dimensions, if a "bubble" of 1s appears, then the energy scales
with the perimeter or boundary. Thus, the bubble will shrink automatically due to energy minimization, which
is a kind of "surface tension." In one dimension, there is only an energy difference of 2, but it doesn’t shrink
when the defect of 1s shrinks, so the endpoints will do a simple random walk, and might collide and disappear,
but might also increase the "bubble" or defect. So one dimension is not good for a stable classical memory,
while two dimensions is good.

People want a "self-correcting" quantum memory. For the toric code, given a pair of defects, thinking of the
energy as the number of constraints violated, making a chain longer or shorter will also only move the defects.
So there is no "string tension" pulling the endpoints/chain back together. Unfortunately, the toric code is not
a self-correcting memory for the same reason that a 1D repetition code is not.
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However, we could potentially create a "self-correcting" quantum memory using "sheet" operators, rather than
"string" operators. Then we need X errors that are planes, and Z errors that are planes, which leads to four
dimensions. So unfortunately, we can do self-correcting quantum memory (provably) in four dimensions, but so
far we don’t have anything for three dimensions.
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33 Quantum Key Distribution
Quantum key distribution addresses how to obtain quantum keys. Classically, people will use protocols such
as RSA, which rely on a computational assumption that an eavesdropper cannot solve some kind of difficult
computational problem. We cannot have information theoretic security, where the keys that Alice and Bob send
do not have enough information for an eavesdropper, which quantum key distribution solves.

Assume we have Alice and Bob, with an eavesdropper Eve, where Alice and Bob have a quantum channel that
Eve can see and disrupt, as well as an authenticated classical channel that Alice and Bob can send messages
through and Eve can see but not disrupt, such as the internet. Some people call this "quantum key expansion,"
where we assume that we have an authenticated classical channel. We will later see some benefits of the quantum
channel, relative to the classical channel. One example comes from the no-cloning theorem, where Eve cannot
copy the information without measuring and causing detectable damage to the message.

Proposition 33.1 (Chernoff Bound)
The binomial distribution is such that P [Bin(n, p) = k] =

(
n
k

)
pk(1− p)n−k. The Chernoff bound states that

P (|Bin(n, p)− np| ≥ nδ) ≤ e−nδ
2/2.

Example 33.2 (BB84 Encryption)
Alice picks random bases b1, · · · , bn and key bits ki, · · · , kn. For example, she might pick random bases
|0⟩ , |1⟩ and |+⟩ , |−⟩, and key bits 11001000, which yields |0⟩ , |1⟩ , |+⟩ , |+⟩ , |0⟩ , |−⟩ , |−⟩ , |1⟩.

Then, Bob picks random bases and measures, which yields for example |0⟩ , |+⟩ , |+⟩ , |1⟩ , |0⟩ , |1⟩ , |−⟩ , |1⟩.
Then, they both announce their bases and keep positions with the same bases. The length is approximately
n/2. We check a random sample for differences and discard these bits. We get 0,+, 0,+, +/−, which goes
to 0/1. This is pretty accurate, by the Chernoff bound.

So first, Alice sends n qubits, and does not send Bob her encoding bases until he’s received all the qubits.

Example 33.3 (Intercept-Resend Attack)
Eve chooses a random basis, measures, and sends Bob the outcome instead. Eve can either measure the
qubits before Bob receives Alice’s basis, or she can know the bases once she sends on the qubits to Bob, at
which point she no longer has the qubits.

Half the time, Eve will guess the correct basis to measure on, so P (wrong basis for each bit) = 1/2. If she
gets the basis wrong, she will cause some damage. If Alice sends |0⟩, and Eve measures in the wrong basis
and it collapses to |+⟩, and Bob measures again in |0⟩ , |1⟩, then Bob will get the correct |0⟩ with probability
1/2. Similarly, if Eve measures in the wrong basis and it collapses to |−⟩, then Bob will similarly get the
correct |0⟩ with probability 1/2. Thus, P (bits disagree|wrong basis) = 1/2 as well. Then, the error rate will
be 1/4: Bob will measure the correct qubit with probability 1/4, assuming that Eve guesses the correct
basis 1/2 the time.a

So if the error rate is 1/4 from Alice to Bob, they will assume that there may be an eavesdropper. However,
in general in quantum systems, there will usually be some error rate, say 5%. So Alice and Bob need
information reconciliation, and privacy amplification.

Using classical linear codes, Alice gets a ∈ Fm2 and Bob gets b = a+ e, where wt(e) ≈ εm. Alice and Bob
agree on a code with check matrix H. Alice sends aH, which is sacrificed (Eve gets a copy of it), and Bob
computes (a+ b)H = eH, which allows him to calculate aH from the channel, where Bob knows b or e, so
this keeps dimkerH bits.

aThis is not the only interception that Eve can do, and it gets a little more complicated, but the analysis can be reduced
to more simple cases. For now, we only analyze this case.
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33.1 Privacy Amplification
Alice and Bob both know a ∈ Fm2 , publish random M ∈ Fm×ℓ

2 , ℓ ≤ m. The secret key is aM . Suppose Eve

knows each bit with probability 2/3. Then, if M =


1
1
...
1

, then aM is the parity. So the probability that Eve

can guess aM is at most 1/2 + e−O(m).

Let a = 011, e = 010, b = 001, H =

1 0
1 1
0 1

 , aH = (10), bH = (01).
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34 More Quantum Key Distribution and Density Matrices
Today, we will finish talking about QKD and introduce density matrices.

For quantum key distribution, entanglement is not necessary, and it suffices to send and receive single qubits.
However, for the proof, considering entanglement will be helpful, only as a mathematical concept.

Consider the EPR pair |Φ⟩ = |00⟩+|11⟩√
2

.

If Alice and Bob both have |Φ⟩, let Alice choose a basis |0⟩ , |1⟩ or |+⟩ , |−⟩, then measures and gets a random
outcome. If Bob measures, he will get the same state.∗

Now, we will discuss a protocol that is equivalent to the protocol that we talked about previously, but is more
technologically difficult to implement and mathematically easier to analyze.

Protocol 34.1 (Lo-Chau QKD)
Consider C1 ⊆ C2 ⊆ Fn2 such that dimC1 − dimC2 = m. Alice prepares |Φ⟩⊗m. Then, Alice encodes half
in XsZtCSS(C1 : C2) for random s, t, and intersperses test qubits randomly set to |0⟩ , |1⟩ , |+⟩ , |−⟩.a

In this diagram, the encoding has m = 3 and 5 output qubits, with three interspersed test qubits.

The encoding protects Alice’s qubits, while the test qubits will measure how much noise Eve is introducing
(there is natural noise, which the encoding protects against, as well as noise from Eve).

Next, Bob announces receipt of the qubits.

Then, Alice announces s, t and the identities and bases of the test qubits.

Next, Bob measures each of the test qubits, from which he can check whether they match the original test
qubits, and estimate the amount of channel noise using the Chernoff bound. So Bob now has the error rate
through the channel, and he can decode.

Now, he has obtained |Φ⟩⊗m, and both can measure in the |0⟩ , |1⟩ basis and get m bits of the key, due to
entanglement.

aThe CSS code can be known by Eve, but it’s not useful because it’s randomly shifted. The normal repetition code might
be 000 and 111, but the shifted repetition code would be 100 and 011, which is no longer helpful to Eve.

Encoding.

Let’s look at this more carefully. We have |Φ⟩⊗m = 1√
2
m

∑
x∈F2

2
|x⟩ |x⟩.

∗In general, with different bases, Bob will get the same state except with the coefficients as the complex conjugates.
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The CSS code works with cosets. Consider {|x+ C2⟩ : x ∈ C1/C2}. There are 2m cosets, and we can choose a
coset representative for each coset, which is an arbitrary choice. Choose x0, · · · , x2m−1 such that each xi + C2

is distinct. Then, we can define C1/C2 = {x0, · · · , x2m−1}. This labels our 2m codewords, so we can encode
numbers 0 through 2m − 1.

Now, we have
1

√
2
m

∑
x∈C1/C2

|x⟩ |x⟩ encode−−−−→ 1
√
2
m

∑
x∈C1/C2

|x⟩
∑
y∈C2

(−1)t·(x+y)√
|C2|

|x+ y + s⟩ ,

which is a shifted CSS code.

Decoding. Why are we doing this? We already had a perfectly good description of this encoding. Now, we
can analyze more easily mathematically.

Quantum error correction corrects superpositions of "all possible attacks," so this protocol will be secure against
general attacks, but this is equivalent to the kind of QKD protocol we have already seen (which we will see
next). If this CSS code can decode 10% of the qubits, and Eve does any superposition of whatever she wants
on 10% of the qubits, this code will correct it. If Eve messes with more than 10% of the qubits, Bob will be
able to detect it based on the test qubits†, and they can abort the protocol.

Correcting X errors.

In this case, Bob will get some superposition of |x+ y + s+ e⟩, where e is the vector of X errors induced by
Eve. Assume that wt(e) is small. We have kerH = C1, and since x, y ∈ C1, (x+ y + s+ e)H = eH + sH, and
since Alice announced s, Bob knows s and can obtain eH, the syndrome, which can be used to diagnose the
error.

Now, Bob knows x+ y for a random y ∈ C2, which yields the output x.

Privacy Amplification. Choose a matrixM and output (x+y)M = xM , which uniquely determines x ∈ C1/C2,
the coset representative. Then, choose C2 = kerM .

34.1 Density Matrices
The following ensembles are indistinguishable:

• |0⟩ with probability 1/2, |1⟩ with probability 1/2

• |+⟩ with probability 1/2, |−⟩ with probability 1/2

• One qubit of |Φ⟩

We can describe these using density matrices.

34.2 Observables
Measure in an orthonormal basis |φ1⟩ , · · · , |φd⟩, and output xi upon outcome |φi⟩ .

We have E[x| |ψ⟩] =
∑d
i=1 | ⟨φi|ψ⟩ |2xi = ⟨ψ|

∑d
i=1 x |φi⟩ ⟨φi| |ψ⟩ = ⟨ψ|X|ψ⟩, where X =

∑d
i=1 x |φi⟩ ⟨φi| is an

observable. This is just a "change of syntax" from our previous formulation.

The density matrix ρ will tell us E[X] for any observable X. We have E[X] = Tr[ρX].

So in the ensemble, we only really want an expected value or average.

†The test qubits require more technology, which is why it’s harder to implement. But it’s easier to analyze.

89



Lecture 35: Density Matrices Part 1

35 Density Matrices

35.1 Operator Formalism
For some operator Λ, where |φi⟩ are the eigenvectors with eigenvalues λi, the eigenvectors are orthonormal if
the operator is Hermitian, so we can write Λ =

∑
i λi |φi⟩ ⟨φi|. Then, measuring the observable λ on the state

ψ yields
P (λ = λi) = | ⟨ψ|φi⟩ |2.

The expected value of the observable λ can be denoted

E[λ] = ⟨Λ⟩ = ⟨ψ|Λ|ψ⟩ .

All of this is the same as our previous conceptualization of measurement, simply packaged differently.

35.2 Ensembles
Consider an ensemble of quantum states, which is a probability distribution over quantum states. An ensemble
|ψi⟩ with probability pi can be written as {(pi, |ψi⟩)}. It’s also possible to take a continuous distribution over
quantum states, but for simplicity we use notation for discrete distributions.

In the beginning of the class, we talked about quantum amplitudes as analogous to classical probabilities,
where the sum of quantum amplitudes norm squared is 1, while the sum of classical probabilities is 1 directly.
Ensembles, where we have a random quantum state, combine classical probabilities with quantum states. Note
that the ensemble {(pi, |ψi⟩)} is different from

∑
i

√
pi |ψi⟩, which may not be a unit vector since the ψi do not

have to be orthogonal to each other.

Now, considering E[λ] must be taken over two sources of randomness: this is the average over {pi} as well as
the quantum measurement. Thus,

E[λ] = ⟨Λ⟩

=

m∑
i=1

pi ⟨ψi|Λ|ψi⟩ .

To separate out the ensemble-dependent quantities from the measurement-dependent quantities, we will write
down some math.

Definition 35.1
The trace of a matrix is TrM =

∑
iMii =

∑
i ⟨i|M |i⟩.

Proposition 35.2 • Trace of products: Tr(AB) = Tr(A) Tr(B).

• Cyclic property: Tr(ABC) = Tr(BCA) = Tr(CAB)

• Trace of scalar: Tr(a) = a

If A and B are nonsquare, it is still possible to take the trace of Tr(AB) as long as AB is square.

Thus, viewing these quantities as matrices, Tr ⟨ψi|Λ|ψi⟩ = TrΛ |ψi⟩ ⟨ψi|, so

E[λ] =
∑
i

piTrΛ |ψi⟩ ⟨ψi| = Tr

(
Λ
∑
i

pi Tr |ψi⟩ ⟨ψi|

)
.

This suggests the definition of a density matrix.

Definition 35.3
The density matrix of an ensemble {(pi, |ψi⟩} is ρ =

∑m
i=1 pi |ψi⟩ ⟨ψi|, so ⟨Λ⟩ = Tr(Λρ) = Tr(ρΛ).

Thus, ensembles with the same density matrix are indistinguishable with respect to measurement, and we could
even consider them to be the same ensemble.
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35.3 Examples of Density Matrices
Consider an example of ensembles which are called pure states, and capture information about quantum
mechanics as we discussed at the beginning of this class.

Example 35.4 (Pure States)
For a pure state {(1, |ψ⟩)}, then ρ = |ψ⟩ ⟨ψ|. Now, eiϕ |ψ⟩ has density matrix ρ = eiψ |ψ⟩ e−iψ ⟨ψ| = |ψ⟩ ⟨ψ|,
so our density matrix formalism captures the notion that an overall phase "doesn’t matter."

Another class of ensembles capture information about probability distributions.

Example 35.5 (Probability Distributions)

Consider {(pi, |i⟩)}. Then, ρ =
∑d
i=1 pi |i⟩ ⟨i| =


p1 0 · · · 0
0 p2 · · · 0
...

...
. . .

...
0 0 · · · pn

, which has the probabilities along the

diagonal.

Thus, we see how density matrices generalize quantum mechanics as well as classical probability distributions.

Example 35.6 (Maximally Mixed State)

Consider the maximally mixed state (1/2, |0⟩), (1/2, |1⟩). Then, ρ =

(
1/2 0
0 1/2

)
. Alternatively, consider

the maximally mixed state (1/2, |+⟩), (1/2, |−⟩). The density matrix is 1
2 (|+⟩ ⟨+|+ |−⟩ ⟨−|) = 1

2I, which is
the same. These two different ensembles give rise to the same density matrix. Underlying the security of
QKD is partially the fact that Eve could not perform any measurement that would give her information
about the basis. The ensembles in the |0⟩ , |1⟩ or in the |+⟩ , |−⟩ basis look the same. In d dimensions, for
an orthonormal basis |v1⟩ , · · · |vd⟩, the maximally state is ρ = 1

d

∑d
i=1 |vi⟩ ⟨vi| =

1
dId.

In general, we have four categories of computation:

deterministic random
classical Bitstrings [d] Probability distributions p1, · · · , pn
quantum |ψ⟩ ∈ Cd, ⟨ψ|ψ⟩ = 1 Density matrices ρ =

∑
pi |φi⟩ ⟨φ|i

To determine whether a given matrix is a density matrix, we have the following conditions.

Theorem 35.7
If A = A†a, then the following are equivalent:

• ⟨ψ|A|ψ⟩ ≥ 0 for all |ψ⟩

• All eigenvalues of A are ≥ 0

• A = B†B for some B.

If A satisfies any of these conditions, we say A is positive semi-definite.
aAll Hermitian matrices have real eigenvalues and an orthonormal eigenbasis

Proof. Given (1), suppose A |v⟩ = λ |v⟩ for |v⟩ ̸= 0. Then, ⟨v|A|v⟩ = λ ⟨v|v⟩ , and since A is Hermitian, λ ≥ 0,
and clearly ⟨v|v⟩ ≥ 0.

Given (2), we show (3). The spectral theorem states that A has an orthonormal basis, so A =
∑
i λi |vi⟩ ⟨vi|,

where λi ≥ 0. Then, writing B =
∑
i

√
λi |wi⟩ ⟨vi| yields B†B = A, where |wi⟩ is any other computational basis.

Given (3), we show (1):
⟨ψ|A|ψ⟩ = ⟨ψ|B†B|ψ⟩ = ||B |ψ⟩ ||2 ≥ 0.
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Theorem 35.8
A matrix ρ is a valid density matrix if and only if

• Trace is one: Tr(ρ) = 1

• Positive semi-definite: ρ ≥ 0a

aAnalogous to classical probabilities between 0 and 1.

Proof. Given a density matrix ρ =
∑
i pi |φi⟩ ⟨φi|, the trace is Tr ρ =

∑
i piTr |φi⟩ ⟨φi| . Then, Tr |φi⟩ ⟨φi| =

Tr ⟨φi|φi⟩ = ⟨φi|φi⟩ = 1. So Tr ρ =
∑
i pi(1) = 1. Moreover, taking B =

∑
i

√
pi |wi⟩ ⟨φi|, we can compute that

ρ = B†B for any orthonormal basis |wi⟩.

Given ρ such that Tr ρ = 1 and ρ ≥ 0, using the spectral theorem, ρ =
∑d
i=1 λi |vi⟩ ⟨vi|, where from ρ being

positive semi-definite, λi ≥ 0. Since the trace is 1, this corresponds to
∑
i λi = 1. Then this is directly a density

matrix where |vi⟩ are orthonormal.

Example 35.9
Consider {(1/2,

√
3/4 |0⟩+

√
1/4 |1⟩), (1/2,

√
3/4 |0⟩ −

√
1/4 |1⟩)}, which is a random phase on |1⟩ . Then,

the density matrix is

ρ =
1

2

(
3/4

√
3/4√

3/4 1/4

)
+

1

2

(
3/4 −

√
3/4

−
√
3/4 1/4

)
=

(
3/4 0
0 1/4

)
,

which corresponds to a different ensemble {(3/4, |0⟩), (1/4, |1⟩).
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36 Density Matrices

36.1 2-Dimensional Density Matrices
Consider ρ ∈ Cd×d such that ρ = ρ† and ρ ≥ 0∗, and Tr ρ = 1.

Consider d = 2. There are 4 complex numbers, which is 8 real degrees of freedom. The Hermitian condition
provides 4 constraints, so there are 4 real degrees of freedom. Thus, for a0, · · · , a3 ∈ R, ρ = a0I+a1σ1+a2σ2+a3σ3

2 ,
where we divide by 2 to make future computations easier. We have Tr ρ = I = a0, and a⃗ = (a1, a2, a3), so
ρ = I+a⃗·σ⃗

2 . The eigenvalues of a⃗ · σ⃗ = ±|⃗a|.† Thus, eig(ρ) = 1±|⃗a|
2 .

To be positive semi-definite, we need 1±|⃗a|
2 ≥ 0, so |⃗a| ≤ 1. This is a ball for a⃗, which is called the Bloch

ball. Earlier, we talked a little about the Bloch sphere. Given a pure qubit v⃗ =

v1v2
v3

, then a spin-1/2 in the

direction v⃗ can be written as cos θ2 |0⟩+ eiϕ sin θ
2 |1⟩ =

(
cos θ2

eiϕ sin θ
2

)
. Then, the density matrix is

|v⟩ ⟨v| =
(

cos2 θ2 e−iϕ cos θ2 sin
θ
2

eiϕ cos θ2 sin
θ
2 sin2 θ2

)
.

We can use trigonometric identities and simplify to get(
1+cos θ

2
e−iϕ sin θ

2
eiϕ sin θ

2
1−cos θ

2

)
=
I

2
+

1

2
cos θσz + · · · = I + v⃗ · σ⃗

2
.

Note that the pure states have |⃗a| = |v⃗| = 1, so they lie on the surface of the sphere. On the other hand, mixed
states will have |⃗a| < 1, and lie on the interior of the sphere.

When a⃗ = 0⃗, the density matrix will be I
2 , which is the maximum mixed state. Similarly,

(
3/4 0
0 1/4

)
will lie

on the line between |0⟩ ⟨0| and I/2.

The eigenvalues measure how "mixed" a state is, while eigenvectors measure the directions. Density matrices
generalize probability distributions to quantum states.

Consider an observable M , ⟨M⟩ = Tr[ρM ]. Then, we have ρ = I+a⃗·σ⃗
2 . For M = σj , Tr[ρM ] = aj , since

Tr 1
2

∑3
i=0 aiσi · σj = aj , so if δ0 = I, then Trσiσj = 2δij .

If you are maximally mixed, a will be zero so every measurement will be random. Reconstructing the density
matrix from measurements is called quantum state tomography.

∗Positive semi-definite
†Remember this by (0, 0, a3) · σ⃗, which has ±a3 on the diagonals, and rotation doesn’t change the eigenvalues.
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36.2 Thermal States
Consider the system in state x that has energy Ex. At thermal equilibrium, Pr(x) = e−βEx

Z , where Z =∑
x e

−βEx , and |beta = 1
kBT

, where we can set 1 = KB = 1.38 · 10−23 J
K . This says that the chance of having

high energy goes down exponentially with energy.

The Hamiltonian H =
∑
xEx |φx⟩ ⟨φx|. Then ρβ =

∑
x
e−βEx

Z |φx⟩ ⟨φx| = e−βH

Tr e−βH . If T → ∞, β → 0, ρβ → I
d

and if T → 0, β → ∞, ρβ → |φ0⟩ ⟨φ0|.

A lot of things are thermal states, but usually we don’t let quantum computers completely equilibriate so they
are not usually thermal states.

36.3 Dynamics
Let |ψ⟩ → U |ψ⟩, and |ψ⟩ ⟨ψ| → U |ψ⟩ ⟨ψ|U†. As a linear combination, ρ→ UρU†. In the qubit case, a unitary
corresponds to a rotation of the Bloch ball.

To measure, measure in |v1⟩ , · · · , |vd⟩ basis, Then, Pr(i) = ⟨vi|ρ|vi⟩, where the post-measurement state is |vi⟩.
An unknown outcome, the state is

∑
i ⟨vi|ρ|vi⟩ |vi⟩ ⟨vi| =

∑
i |vi⟩ ⟨vi| ρ |vi⟩ ⟨vi|. Then, for |v1⟩ = |1⟩ , · · · , |vd⟩ =

|d⟩, then ρ 7→


ρ11 0 · · · 0
0 ρ22 · · · 0
...

...
. . .

...
0 0 · · · ρdd

. This corresponds to zeroing out the off-diagonal elements, and on the

Bloch ball corresponds to zeroing out the x and y elements.

This is called decoherence, where T1 is the time to reach thermal equilibrium and T2 is dephasing: ρ̇ =

ρβ−ρ
T1

−

 0 ρ01
ρ10 0


T2

. Usually T2 is a lot quicker; the environment simply learns whether you are in the 0 or 1

state. Here ρβ = e−βH

Tr e−βH is the thermal state.

Now, take ρ = I+a⃗·σ⃗
2 . Then σ3ρσ3 = I+(−a1,−a2,a3)·σ

2 , which looks like a 180 degree rotation about the z axis.

We have ρ→ ρ+σ3ρσ3

2 = I+a3σ3

2 .
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37 No Section Title
Density matrices are a way of modeling noise. One type of noise is called dephasing, which can either be a
|0⟩ , |1⟩ measurement, or a random {I, Z} gate. There are other ways of of modeling dephasing, such as I 90%
of the time and Z 10% of the time, but this is a simple model.

Supose we use a repetition code, with a |000000⟩+b |111111⟩, which leaves the state more vulnerable to dephasing
as the number of repetitions increases, since dephasing any one of the repeated qubits dephases the entire state.
In practice, this state has the density matrix a |000000⟩ ⟨000000|+ b |111111⟩ ⟨111111|. On classical computers,
it’s common to use codes similar to repetition codes that are good for X errors but more vulnerable to Z errors
or dephasing noise.

37.1 Depolarizing Noise
Consider a 1/4 probability of I,X, Y , or Z. Starting with ρ = I+a⃗·σ⃗

2 maps to IρI+XρX+Y ρY+ZρZ
4 . Using the

Bloch ball perspective, recall that Z left the identity part of ρ alone, and the Z part alone, while flipping the
X and Y components. Similarly, X leaves the I and X parts alone and flips Y and Z.

In total, this becomes I
2 + 1

8 (⃗a + (a1,−a2,−a3) + (−a1, a2,−a3) + (−a1,−a2, a3)) · σ = I
2 . Equivalently, we

could apply I or Z randomly, then I or X randomly, which takes ρ 7→ I+a3σ3

2 = 1+a3
2 |0⟩ ⟨0|+ 1−a3

2 |1⟩ ⟨1|, which
is maximally mixed.

When we talked about the Lo-Chau protocol, we said to apply X or Z randomly to each of the qubits. Then,
Eve will see only a maximally mixed state, while Bob will be able to decode with no problem as the sequence
of X and Z are revealed later. Here it is XsZtCSS(C1 : C2).

Another place where density matrices can come from is from entangled states. For example, half of a Bell state
looks maximally mixed. A feature of quantum mechanics is that a state can be globally pure but locally mixed.
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