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Lecture 1: Rn and Abstract Addition and Scalar Multiplication

1 Rn and Abstract Addition and Scalar Multiplication

1.1 Introduction
The lecturer is Zhiwei Yun. The notes are taken by Jack Liu and the note-taking is supervised by Ashay
Athalye. The text used in this class is the 3rd edition of Linear Algebra Done Right, by Sheldon Axler.

This class is different from a linear algebra class you might have taken in the past. Most linear algebra classes
emphasize matrices and solving linear equations. However, this class will focus on proofs and the theoretical
side of linear algebra.

A typical problem in linear algebra involves solving a system of linear equations:{
2x+ 3y = 1

x− y = 2.

We can also interpret these equations as lines on a plane, with the solution being the intersection of the two
lines.

Thus, we can describe linear algebra both algebraically (by solving linear equations) and geometrically (by
finding the intersection of two "flat" shapes or finding the distance from a point to a "flat" shape).1

The central objects of this course are vector spaces. We will spend the first several lectures investigating many
aspects of vector spaces. Afterwards, we will study linear maps, which will relate vector spaces to each other.
Vector spaces and linear maps are examples of abstract objects. The opposite of abstract objects are concrete
objects, such as a vector (x1, x2, x3) or the matrix2 0 4

0 7 8
1 0 1

 .

These objects are concrete in the sense that they can be represented by numbers, while abstract objects cannot.
Throughout this course, we will develop a bridge between abstract objects and concrete objects, and show how
these objects actually represent the same idea in mathematics. While we will touch on both types of objects,
we will mostly focus on the abstract objects of vector spaces and linear maps.

Finally, a large part of this class is understanding and writing proofs. Each lecture will present at least one
proof, and the homework and exams will have multiple proofs for you to derive.

1.2 Rn

Now, we will introduce the two most basic examples of a vector space.

Definition 1.1 (Rn)
Rn is the set of all lists of length n of elements of R:

Rn = {(x1, . . . , xn) | xi ∈ R for i = 1, . . . , n}.

The curly braces around the definition of Rn signify that Rn is a set. The (x1, . . . , xn) gives the general form of
an element of Rn as a list of length n, while the xi ∈ R denotes that each element of the list is a real number.

In addition, here is a quick review on set notation.
1The term "flat" is not well-defined, but it comes from the fact that the equations for these shapes must be linear. Thus, lines

and planes are "flat" shapes, while circles and ellipses are not.
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Lecture 1: Rn and Abstract Addition and Scalar Multiplication

Example 1.2
Suppose S is a set.

• a ∈ S: a is an element of S

• S ⊂ S′: S is a subset of S′

• ∀: for all

• ∃: there exists

• ∃!: there exists a unique.

For instance, the notation
∃!x ∈ R s.t. 2x = 1

means "there exists a unique element x in R such that 2x = 1."

Rn is a relatively simple example of a vector space. First, let’s investigate some operations on Rn.

Definition 1.3 (Operations on Rn)
Suppose (x1, . . . , xn), (η1, . . . , yn) ∈ R and a ∈ R. The, we define the following definitions:

1. addition: (x1, . . . , xn) + (y1, . . . , yn) = (x1 + y1, . . . , xn + yn)

2. multiplication: (x1, . . . , xn) · (y1, . . . , yn) = (x1y1, . . . , xnyn)

3. scalar multiplication: a · (x1, . . . , xn) = (ax1, . . . , axn).

Note that these are not the only operations that could be defined on Rn (for instance, one could easily define
subtraction).

Student Question. What is the geometric interpretation of the multiplication of two elements of Rn?

Answer. In fact, there is no natural geometric interpretation of multiplication. Thus, for most of this course,
we will completely forget about multiplication, and only focus on addition and scalar multiplication.2

On the other hand, addition and scalar multiplication both have natural geometric meanings.

Example 1.4
Suppose (x1, x2), (y1, y2) ∈ R2. Then, (x1+ y1, x2+ y2) represents the fourth vertex of a parallelogram with
vertices (x1, y1), (x2, y2), and the origin:

addition:
0

(x1, x2)

(y1, y2)

(x1 + y1, x2 + y2)

Additionally, scalar multiplication represents a scaling the length of a vector by some factor:

scalar multiplication:
2 · =

Student Question. Do the geometrical meaning of addition and scalar multiplication extend to higher dimen-
sions of Rn?

Answer. Yes! For instance, the addition of three vectors in R3 forms a parallelepiped, analogous to the
parallelogram in R2.

2We will see some operations that look like multiplication when we cover inner product spaces, which will be much later in this
course.
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Lecture 1: Rn and Abstract Addition and Scalar Multiplication

There also exists a special vector in Rn, known as the zero vector.

Definition 1.5 (⃗0)
Let 0⃗ denote the element in Rn defined by

0⃗ = (0, . . . , 0).

For all x = (x1, . . . , xn) ∈ R, 0⃗ satisfies
0⃗ + x = x+ 0⃗ = x.

Thus, 0⃗ is an additive identity for Rn.

The following result gives more properties of addition.

Theorem 1.6 (Properties of addition in Rn)
Suppose x, y, z ∈ Rn. Addition satisfies the following properties:

• commutativity: x+ y = y + x

• associativity: (x+ y) + z = x+ (y + z)

• additive inverse: −x = (−x1, . . . ,−xn).

In particular, we can think of the additive inverse of x in two ways. Using scalar multiplication, we can express

−x = (−1)x.

Using addition, we can express
x+ (−x) = 0⃗.

The final property of Rn that we will discuss in this section is as follows.

Theorem 1.7 (distributive property)
Suppose x, y ∈ Rn and a, b ∈ R. Then,

a(x+ y) = ax+ ay

and
(a+ b)x = ax+ bx.

In summary, Rn is a set with two operations: addition and scalar multiplication. While many of these properties
of Rn may seem quite basic, we will carry over many of these properties in general vector spaces.

1.3 Examples of Vector Spaces
Our discussion of Rn in the previous section gives us some intuition on what a vector space is. As a rough
definition, a vector space V is a set with two operations, abstract addition and abstract scalar multiplication,
that satisfies a list of properties. Thus, when we define a vector space, we have to give three pieces of structure:
a set of vectors, abstract addition, and abstract scalar multiplication.

Let us consider more examples of vector spaces. Although we have not fully defined vector spaces yet, we can
verify later that all of these examples are indeed vector spaces.
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Lecture 1: Rn and Abstract Addition and Scalar Multiplication

Example 1.8
Consider the set of complex numbers C. We can express any complex number as a+ bi for a, b ∈ R. Thus,
(a, b) ∈ R2, so the set of elements C is essentially equivalent to the set of elements R2.

Addition in C also works analogously to R2, since addition works by combining the real parts and imaginary
parts separately:

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i.

However, multiplication in C is more complicated. We know that R2 has scalar multiplication defined by

t(a, b) = (ta, tb)

for t ∈ R. However, multiplication in C is defined by

(a+ bi)(c+ di) = (ac− bd) + (ad+ bc)i.

It follows that multiplication in C is more general than scalar multiplication in R. Setting a+ bi = t ∈ R
(i.e. b = 0) gives

(t+ 0i)(c+ di) = tc+ tdi,

which is analogous to scalar multiplication in R2.

Student Question. For scalar multiplication, must is a scalar a in R or C?

Answer. In Rn, we are working with scalars in R. Later, we will be working with both R and C. In particular,
when we introduce vector spaces, we will have to state whether V is a real vector space or a complex vector
space, which will determine whether a is in R or C. Therefore, we actually have to specify four things to define
a vector space: a field F (R or C), a set of vectors, addition, and scalar multiplication.

In the example above, we saw that C and R2 have the same structure in terms of the set of vectors, addition,
and scalar multiplication if you restrict the scalars to be real. Thus, C is a real vector space.

Example 1.9
Suppose S is an arbitrary set and F = R. Let

V = {f : S → R}.

We wish to define abstract addition and scalar multiplication to make V into a vector space.

For abstract addition, suppose f, g ∈ V. We define

(f + g)(x) = f(x) + g(x)

for all x ∈ S.

For abstract scalar multiplication, suppose f ∈ V and a ∈ R. Suppose that we define

(af)(x) = f(ax)

for all x ∈ S. However, note that S is an arbitrary set, so it could be possible that ax is not well-defined.
For instance, S could be a set consisting of apples, so it would not make sense to multiply an apple by some
scalar a. Instead, we define

(af)(x) = a · f(x).

Note that f(x) ∈ R, so it always possible to multiply a · f(x). Thus, this definition makes sense.
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Example 1.10
Suppose F = R and

V = {f : [0, 1] → R, continuous functions}.

Define abstract addition and scalar multiplication as they are defined in Example 1.9.

Note that this example is a special case of Example 1.9, where S = [0, 1] and we are restricting f to by
continuous.

In the above two examples, we specified the four pieces of structure that make up a vector space (field, set of
vectors, addition, and scalar multiplication). However, we did not check any properties of V, so we cannot say
yet whether V is a vector space or not. Once we fully define vector spaces, we will be able to come back and
verify that V is indeed a vector space in both examples.

Student Question. Is it possible for two vector spaces to have the same F and V, but have different definitions
of abstract addition and scalar multiplication?

Answer. Yes! Suppose F = R and V = R. Define abstract addition as the usual addition in R. Now, we will
accept the following fact.

Fact 1.11
R has a lot of automorphisms.

An automorphism is a bijection φ : R → R which preserves the arithmetic operations

φ(x+ y) = φ(x) + φ(y)

and
φ(xy) = φ(x)φ(y).

It is impossible to explicitly write down any such φ (besides the identity). However, in an abstract sense,
there exist an uncountably infinite such φ.

Then, define abstract scalar multiplication as

a · x = φ(a)x.

It turns out that this "weird" definition of V is indeed a vector space. Another example is F = C, V = R,
addition is the usual addition, and scalar multiplication is defined by a · x = ax.

This shows that for any given field and set of vectors, there can still be several different definitions of abstract
addition and scalar multiplication to form a vector space.
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Example 1.12
Suppose F = R and

V = {f : R → R, differentiable functions | f ′(x) + x2f(x) = 0}.

Define abstract addition and scalar multiplication as as they are defined in Example 1.9. For any f, g ∈ V,
let us verify that h = f + g satisfies h′ + x2h = 0. It is clear that

h′ + x2h = (f ′ + g′) + x2(f + g) = (f ′ + x2f) + (g′ + x2g) = 0,

so h ∈ V. Furthermore, we can similarly verify that h = af satisfies h′ + x2h = 0 for any a ∈ R. Therefore,
addition and scalar multiplication are well-defined.

However, suppose

V = {f : R → R, differentiable functions | f ′(x) + x2f(x) = 1}.

Then, for f, g ∈ V, we can compute that h = f + g satisfies

h′ + x2h = 2 ̸= 1.

Thus, this definition of abstract addition does not define an operation on V.

Note that the set V = {f | f ′ + x2f = 1} is a subset of the set {f | R → R}, which we gave vector space
structure in Example 1.9 (set S = R). To show that V is a vector space with the same definition of abstract
addition and scalar multiplication, we must show that the result of abstract addition or scalar multiplication of
any elements of V is still in V, which turns out not to be the case in this example. This will lead to the notion
of subspace, which we will discuss in a later lecture.
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2 Vector Spaces and Subspaces

2.1 Review
Last time, we introduced one of the simplest vector spaces, Rn, and discussed some of its properties. We
also used the properties of Rn to motivate some other examples of vector spaces and gave a very rudimentary
definition of what a vector space is.

2.2 Definition of Vector Space
Now, we will finally fully define vector spaces. Recall that F = R or C.

Definition 2.1 (vector space)
A F-vector space (also called a vector space over F) is a set V along with two operations

• addition, which maps each pair of elements u, v ∈ V to an element u+ v ∈ V,

• scalar multiplication, which maps each a ∈ F and each u ∈ V to an element av ∈ V

satisfying the following properties:

• commutativity:
u+ v = v + u for all u, v ∈ V ;

• associativity:

(u+ v) + w = u+ (v + w) for all u, v, w ∈ V

(ab)v = a(bv) for all a, b ∈ F, v ∈ V ;

• additive identity:

there exists an element 0 ∈ V such that 0 + v = v for all v ∈ V ;

• additive inverse:
for every v ∈ V, there exists w ∈ V such that v + w = 0⃗;

• multiplicative identity:
1v = v for all v ∈ V ;

• distributive properties:

a(u+ v) = au+ av for all a ∈ F, u, v ∈ V

(a+ b)v = av + bv for all a, b ∈ F, v ∈ V.

Student Question. Since we mentioned commutativity of addition, does there also exists commutativity of
scalar multiplication, i.e. are av and va for a ∈ F and v ∈ V ?

Answer. We always denote scalar multiplication by putting the scalar in front of the vector, i.e. av. We will
never write va.

Remark. We will soon prove that if w is the additive inverse of v, then w is unique. In fact, w = (−1)v. Since
w is unique, we will denote w by −v.

Now, consider the following example of a vector space, known as the function space.

10



Lecture 2: Vector Spaces and Subspaces

Example 2.2
Suppose S is a set and

V = {f : S → C}.

For f, g ∈ V, define addition as
(f + g)(x) = f(x) + g(x)

for all x ∈ S. This defines a new function f + g : S → C.

For a ∈ C and f ∈ V, define scalar multiplication as

(af)(x) = a · f(x)

for all x ∈ S. Similarly, this defines a new function af : S → C.

Let us verify that V has an additive identity. Note that V must contain the zero function:

0⃗(x) = 0

for all x ∈ S. For any, f ∈ V,
(f + 0⃗)(x) = f(x) + 0⃗(x) = f(x)

for all x ∈ S. Therefore, f + 0⃗ = f, so 0⃗ is the additive identity in V. The verification that V satisfies all
other properties in Definition 2.1 is left as an exercise.

The following example will introduce Cn, which is analogous to Rn over complex numbers.

Example 2.3
Define

Cn = {(x1, . . . , xn) | xi ∈ C, i = 1, . . . , n}.

Furthermore, define V as in Example 2.2 with S = {1, . . . , }. Then, there exists a bijection from V to Cn

by setting f(i) = xi for all i = 1, . . . , n. Thus, Cn is a vector space.

2.3 Properties of Vector Spaces
Now, we will discuss some consequences of the 6 basic properties in Definition 2.1.

Theorem 2.4
Suppose V is a vector space. Then, the additive identity in V is unique.

Proof. Suppose 0⃗ and 0⃗′ are both additive identities in V. We wish to show that 0⃗ = 0⃗′. We know that 0⃗ + v = v
and 0⃗′ + v = v for all v ∈ V. Then,

0⃗ = 0⃗ + 0⃗′ = 0⃗′ + 0⃗ = 0⃗′,

as desired.

The next result will show another uniqueness property.

Theorem 2.5
Suppose V is a vector space. Then, any element in V has a unique additive inverse.

Proof. Let v ∈ V. Suppose w and w′ are both additive inverses of v. We know that v + w = v + w′ = 0⃗. Then,

w = 0⃗ + w = (w′ + v) + w = w′ + (v + w) = w′ + 0⃗ = w′,

as desired.

Thus, since additive inverse is unique, we can wrote −v to denote the additive inverse of v.
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Theorem 2.6
Suppose V is a vector space u, v, w ∈ V. If u+ w = v + w, then u = v.

Proof. Adding −w to both sides gives the desired result.

Theorem 2.7
Suppose V is a vector space. Let a ∈ F and v ∈ V. Then,

1. a0⃗ = 0⃗

2. 0v = 0⃗

3. (−1)v = −v.

Proof. To prove (1), we have
a0⃗ = a(⃗0 + 0⃗) = a0⃗ + a0⃗.

Adding −(a0⃗) to both sides gives a0⃗ = 0⃗.

To prove (2), we have
0v = (0 + 0)v = 0v + 0v.

Adding −(0v) to both sides gives 0v = 0.

To prove (3), we have
v + (−1)v = 1v + (−1)v = (1 + (−1))v = 0v = 0⃗,

so (−1)v is the additive inverse of v.

2.4 Subspaces
In this section, we will introduce the notion of subspaces.

Definition 2.8
Suppose V is a vector space. A subset U ⊂ V is called a subspace of V is it satisfies:

1. 0⃗ ∈ U

2. U is closed under addition (i.e. u1, u2 ∈ U implies u1 + u2 ∈ U)

3. U is closed under scalar multiplication (i.e. a ∈ F, u ∈ U implies au ∈ U).

Consider the following example of a subspace.
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Example 2.9
Suppose V = C2 = {(x1, x2) | x1, x2 ∈ C}. Let

U1 = {(x1, 0) | x1 ∈ C}.

It is clear that (0, 0) ∈ U1. Furthermore, for (x1, 0), (y1, 0) ∈ U1, we have

(x1, 0) + (y1, 0) = (x1 + y1, 0) ∈ U1,

so U1 is closed under addition. Similarly, for a ∈ C and (x1, 0) ∈ U1, we have

a(x1, 0) = (ax1, 0) ∈ U1,

so U1 is closed under scalar multiplication. Thus, U1 is a subspace of V.

Additionally, let U2 = {(0, 0)} and U3 = V. It is clear that both U2 and U3 include the zero vector, are
closed under addition, and are closed under scalar multiplication. Thus, U1 and U2 are both subspaces of V.

Finally, let
U4 = {(x1, x2) ∈ C2 | 2x1 + x2 = k}.

For what values of k is U4 a subspace? For k ̸= 0, it follows that the zero vector is not in U4, so it cannot
be a subspace. For k = 0, the verification that U4 is closed under addition and scalar multiplication is left
as an exercise. Thus, U4 is a subspace only if k = 0.

The next result gives an important property of subspaces.

Proposition 2.10
Suppose V is a vector space over F and U ⊂ V is a subspace of V. Then, U is a vector space over F under
the same addition and scalar multiplication of V.

Proof. To show that U is a vector space, we must show that it satisfies the six properties in Definition 2.1.
The condition that 0⃗ ∈ U ensures that the additive identity of V is in U. The closure of addition and scalar
multiplication on U ensure that those two operations make sense over U.

Since U is closed under scalar multiplication, then (−1)v = −v ∈ U for any v ∈ U. Thus, there exists an additive
inverse for every vector in U. Finally, all other properties of a vector space are automatically satisfied in U
because they hold in V. Thus, U is a vector space.

2.5 Sum of Subspaces
This section will introduce the notion of the sum of subspaces.

Definition 2.11 (sum of subspaces)
Suppose V is a vector space over F and U1, U2 ⊂ V are subspaces of V. The sum of U1 and U2 is defined as

U1 + U2 = {v ∈ V | v = u1 + u2 for some u1 ∈ U1, u2 ∈ U2.}

From this definition, it is clear that U1 + U2 is a subset of V.

Proposition 2.12
Suppose V is a vector space over F and U1, U2 ⊂ V are subspaces of V. Then,

1. U1 + U2 is a subspace of V

2. U1 + U2 is the smallest subspace of V that contains both U1 and U2.

Proof. To prove (1), we must verify that U1 + U2 satisfies the three conditions in Definition 2.8. We know that
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0⃗ ∈ U1, U2, so
0⃗ = 0⃗ + 0⃗ ∈ U1 + U2.

Now, suppose v, w ∈ U1 + U2. We can express v = u1 + u2 and w = u′1 + u′2 for u1, u′1 ∈ U1 and u2, u
′
2 ∈ U2.

Because U1 is a subspace, it is closed under addition, so u1 + u′1 ∈ U1. Similarly, u2 + u′2 ∈ U2. Then,

v + w = (u1 + u2) + (u2 + u′2) = (u1 + u′1) + (u2 + u′2) ∈ U1 + U2,

so U1 + U2 is closed under addition. Similarly, suppose v = u1 + u2 ∈ U1 + U2 and a ∈ F. Because U1 is a
subspace, it is closed under scalar multiplication, so au1 ∈ U1. Similarly, au2 ∈ U2. Therefore,

av = a(u1 + u2) = au1 + au2 ∈ U1 + U2,

so U1 + U2 is closed under scalar multiplication. Thus, U1 + U2 is a subspace.

To prove (2), for all u1 ∈ U1, it follows that u1 + 0⃗ = u1 ∈ U1 + U2, so U1 is contained in U1 + U2. Similarly,
U2 is contained in U1 +U2. Conversely, any subspace of V containing U1 and U2 must contain U1 +U2 because
subspaces are closed under addition, so they must contain the sums of their elements. Therefore, U1 +U2 is the
smallest subspace of V that contains both U1 and U2.

Finally, we can extend this notion to the sum of an arbitrary number of subspaces U1 + · · · + Um, for which
Proposition 2.12 still holds.
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3 Direct Sum, Span, and Linear Independence

3.1 Review
Last time, we introduced the notion of vectors and subspaces. We also introduced sums of subspaces.

3.2 Sum of Subspaces (continued)
Consider the following example of sum of subspaces.

Example 3.1
Suppose V = C3 and we define U1 and U2 as

U1 = {(x1, x2, x3) ∈ C3 | x1 + x2 + x3 = 0}, (1)

U2 = {(0, x, 0) ∈ C3 | x ∈ C}. (2)

Then, U1 and U2 are subspaces (as an exercise, verify that this is the case). By the definition of sum of
subspaces, any v ∈ U1 + U2 is of the form

v = (x1, x2, x3) + (0, x, 0) = (x1, x2 + x, x3)

such that x1 + x2 + x3 = 0. To determine which vectors are in U1 + U2, let v = (a, b, c) = (x1, x2 + x, x3).
Then, we have the system of equations

a = x1

b = x2 + x

c = x3

x1 + x2 + x3 = 0.

We can easily solve this system to get

x1 = a

x2 = −a− c

x3 = c

x = a+ b+ c.

Because there exists a solution (x1, x2, x3, x) for any (a, b, c) ∈ C3. it follows that any vector in C3 is also
in U1 + U2. In particular,

(a, b, c) = (a,−a− c, c) + (0, a+ b+ c, 0) ∈ U1 + U2,

since (a,−a− c, c) ∈ U1 and (0, a+ b+ c, 0) ∈ U2. Therefore, U1 + U2 = C3 = V.

Student Question. What if U2 had a condition similar to U1? For instance, define U ′
2 as

U ′
2 = {(x1, x2, x3) ∈ C3 | 2x1 + x2 − 3x3 = 0}.

What is U1 + U ′
2?

Answer. We use a similar process as the above example. Suppose u1 = (x1, x2, x3) ∈ U1 and u′2 = (y1, y2, y3) ∈
U ′
2. Then, v =∈ U1 + U2 if

v = (a, b, c) = (x1, x2, x3) + (y1, y2, y3)

such that x1 + x2 + x3 = 0 and 2y1 + y2 − 3y2. We can set up another system of equations including a, b, c to
determine U1 + U2.

As a bit of an aside, consider the following example.
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Example 3.2
Suppose V = C3 and define U1 and U2 the same as in Example 3.1. We wish to find U1 ∩ U2. By the
definitions of U1 and U2, we know that v = (a, b, c) ∈ C3 satisfies

• a+ b+ c = 0,

• a = 0, c = 0.

It is clear that the only solution is (a, b, c) = (0, 0, 0), so U1 ∩U2 = {⃗0}. Thus, U1 ∩U2 is a subspace in this
example.

In fact, any the intersection of any two subspaces of V is itself a subspace of V. The proof is left as an exercise.

3.3 Direct Sum
In this section, we will introduce the notion of direct sums.

Definition 3.3 (direct sum)
Suppose U1, . . . , Um are subspaces of V. We call U1+ · · ·+Um a direct sum if every vector in U1+ · · ·+Um

can be written as u1 + · · ·+ um in only one way, where each ui ∈ Ui.

In other words, if U1 + · · ·+ Um is a direct sum and

v = u1 + · · ·+ um = w1 + · · ·+ wm

for ui, wi ∈ Ui, then each ui = wi.

In terms of notation, if U1 + · · ·+ Um is a direct sum, then U1 ⊕ · · · ⊕ Um denotes U1 + · · ·+ Um, with the ⊕
notation indicating that it is a direct sum. Additionally, we can use Σ notation to denote the sum of subspaces:

m∑
i=1

Ui = U1 + · · ·+ Um.

To denote a direct sum, we can use
m⊕
i=1

Ui = U1 ⊕ · · · ⊕ Um.

Now, consider the following example.

Example 3.4
Suppose V = C3 and define U1 and U2 the same as in Example 3.1. Is U1 + U2 a direct sum?

We wish to determine for any v = (a, b, c) ∈ U1 + U2 = C3 whether or not we can write v = u1 + u2 in
more than one way, where u1 ∈ U1 and u2 ∈ U2. In Example 3.1, we found that the only way to express
v = u1 + u2 is

v = (a, b, c) = (a,−a− c, c) + (0, a+ b+ c, 0).

Thus, U1 + U2 is a direct sum.

Student Question. After Example 3.1, we defined

U ′
2 = {(x1, x2, x3) ∈ C3 | 2x1 + x2 − 3x3 = 0}.

Is U1 + U ′
2 a direct sum?

Answer. If we let v = (a, b, c) ∈ U1 +U ′
2, u1 = (x1, x2, x3) ∈ U1, u2 = (y1, y2, y3) ∈ U2, and set up a system of

equations to describe v = u1 + u2, we would get a system of 5 homogeneous equations in 6 variables, which has
infinitely many solutions. Thus, there is more than one way to express v = u1 + u2, so U1 + U ′

2 is not a direct
sum. The details of this argument are left to the reader.

The next result gives another condition to tell if a sum of subspaces is a direct sum.
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Lemma 3.5
Suppose U1, U2 are subspaces of V. Then, U1 + U2 is a direct sum if and only if U1 ∩ U2 = {⃗0}.

This is the first "if and only if"3 statement in this course. To prove an "if and only if" statement, we must show
that the statement holds in both directions.

Proof. First, we wish to prove that if U1 + U2 is a direct sum, then U1 ∩ U2 = {⃗0}.4 Suppose v ∈ U1 ∩ U2. We
know that

v = v + 0⃗

where v ∈ U1 and 0⃗ ∈ U2. Similarly, we know
v = 0⃗ + v

where 0⃗ ∈ U1 and v ∈ U2. Since U1 + U2 is a direct sum, these two expressions must be the same, so v = 0⃗.
Thus, U1 ∩ U2 = {⃗0}.

Now, we wish to prove that if U1 ∩ U2 = {⃗0}, then U1 + U2 is a direct sum. Let v ∈ U1 ∪ U2. Suppose we write
v in two ways

v = u1 + u2 = w1 + w2

where u1, w2 ∈ U1 and u2, w2 ∈ U2. It remains to show that u1 = w1 and u2 = w2. We can rearrange the
equation u1 + u2 = w1 + w2 to get

u1 − w1 = w2 − u2.

Since U1 is a subspace, it is closed under addition, so u1 − w1 ∈ U1. Similarly, w2 − u2 ∈ U2. It follows that
u1 − w1 = w2 − u2 ∈ U1 ∩ U2, so u1 − w1 = w2 − u2 = 0⃗. Therefore, u1 = w1 and u2 = w2, as desired.

Example 3.6
Let us apply Lemma 3.5 to Example 3.4. By Example 3.2, we know that U1 ∩U2 = {⃗0}. Therefore, U1 +U2

is a direct sum.

A natural question is whether or not this result can be generalized for more than two subspaces; that is, if
U1, U2, U3 are subspaces of V, then does the condition

U1 ∩ U2 = U2 ∩ U3 = U1 ∩ U3 = {⃗0}

imply that U1 + U2 + U3 is a direct sum? To answer this question, consider the following subspaces of R2 :

U1

U2

U3

More precisely, we can define

U1 = {(x, 0) | x ∈ R},
U2 = {(0, y) | x ∈ R},
U3 = {(x, y) | x ∈ R}.

It is clear that the intersection of any two of these subspaces is the (0, 0). However, note that

(1, 1) = (1, 0) + (0, 0) + (0, 1)

3The term "if and only if" also can be denoted by "iff" or with the double headed arrow ” ⇐⇒ .”
4This is known as the forward direction of the proof, denoted by ⇒ . The converse of this statement is the backwards direction,

denoted by ⇐ .
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where (1, 0) ∈ U1, (0, 0) ∈ U2, and (0, 1) ∈ U3 and

(1, 1) = (0, 0) + (1, 1) + (0, 0)

where (0, 0) ∈ U1, (1, 1) ∈ U2, and (0, 0) ∈ U3. Thus, U1 + U2 + U3 is not a direct sum.

Student Question. We have just shown that the condition U1∩U2 = U2∩U3 = U1∩U3 = {⃗0} is not sufficient
to prove that U1 + U2 + U3 is a direct sum. However, is the condition U1 ∩ U2 = U2 ∩ U3 = U1 ∩ U3 = {⃗0}
necessary to prove that U1 + U2 + U3 is a direct sum?

Answer. Yes! Without loss of generality, assume U1 ∩ U2 ̸= {⃗0}. By Lemma 3.5, U1 + U2 is not a direct sum,
so U1 + U2 + U3 is also not a direct sum.

Student Question. Is U1 + U2 + U3 not a direct sum in this example because there are three subspaces but
V = R2 is only two-dimensional?

Answer. We will introduce the notion of dimension in the next lecture, which will illuminate more properties
about direct sums. In general, we will be able to show that three lines in R2 will never be a direct sum because
the dimensions of the subspaces (lines) add up to more than the dimension of R2.

We will now state the following result without proof.

Lemma 3.7
Suppose U1, . . . , Um are subspaces of V. Then, U1 + · · ·+Um is a direct sum if and only if 0⃗ can be written
as u1 + · · ·+ um (ui ∈ Ui) in only one way, which is by taking all ui = 0⃗.

By Definition 3.3, if U1 + · · · + Um is a direct sum, then any v ∈ U1 + · · · + Um can be written uniquely as
u1 + · · ·+ um where ui ∈ Ui. The above results tells us that if we can verify that if only the zero vector can be
written uniquely in this way, then all vectors in U1 + · · ·+ Um can be written uniquely in this way.

3.4 Span
Now, we will shift our discussion to linear combinations and span.

Definition 3.8 (linear combination and span)
Suppose v1, . . . , vm are vectors in V. Then,

• a linear combination of v1, . . . , vm is a vector in V of the form

a1v1 + · · · amvm

for a1, . . . , am ∈ F,

• the span of v1, . . . , vm, denoted span(v1, . . . , vm) is the set of all linear combinations of v1, . . . , vm.

Since all linear combinations of v1, . . . , vm are vectors in V, it follows that span(v1, . . . , vm) is a subset of V.
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Example 3.9
Suppose V = C3 and

v1 = (1,−1, 0), v2 = (0, 1,−1), v3 = (−1, 0, 1).

Then, any v ∈ span(v1, v2, v3) must be of the form

v = a1(1,−1, 0) + a2(0, 1,−1) + a3(−1, 0, 1)

= (a1 − a3,−a1 + a2,−a2 + a3)

for a1, a2, a3 ∈ C. To determine span(v1, v2, v3), we need to find all such v that can be expressed in this
form. In particular, we notice that

(a1 − a3) + (−a1 + a2) + (−a2 + a3) = 0,

so the coordinates of any v ∈ span(v1, v2, v3) must add to 0. In fact, it is that case that

span(v1, v2, v3) = {(x1, x2, x3) ∈ C2 | x1 + x2 + x3 = 0}.

The verification of the above statement is left as an exercise.

Let use clarify the span of an empty list of vectors.

Definition 3.10 (span())
The span of the empty list is {⃗0}.

Consider the following simple examples of span.

Example 3.11
These bases cases of span are useful to know:

• span(⃗0) = {⃗0},

• span(v, v, . . . , v) = span(v) = {av | a ∈ F}.

3.5 Linear Independence
We can make an analogy between the span of vectors span(v1, . . . , vm) and the sum of subspaces U1 + · · ·+Um.
In particular, we have the notion of direct sum U1 ⊕ · · · ⊕Um. Now, we will develop an analog of direct sum for
vectors, with the notion of linear independence.

Definition 3.12 (linearly independent)
Suppose v1, . . . , vm ∈ V. The list of vectors v1, . . . , vm is linearly independent if the equation

a1v1 + · · ·+ amvm = 0⃗

has the unique solution a1 = · · · = am = 0.

Note the similarity between the above definition to Lemma 3.7; both have a condition requiring a sum to be 0⃗
where the only solution is when all variables are equal to 0.

Student Question. I thought that the definition of linear independence is when vectors are not scalar multiples
of each other. Is this correct?

Answer. This definition works to see if two vectors are linearly independent, but does not work for lists of more
than two vectors.

Consider the follow examples of linear independence.
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Example 3.13
Suppose V = C3 and

v1 = (1,−1, 0), v2 = (0, 1,−1), v3 = (−1, 0, 1).

Is v1, v2, v3 linearly independent?

By observation, we have
v1 + v2 + v3 = 0⃗.

Therefore, v1, v2, v3 is not linearly independent, also known as linearly dependent.

Example 3.14
Suppose v1 = 0⃗ and v2 ̸= 0⃗. Is v1, v2 linearly independent?

Note that
v1 + 0v2 = 0⃗,

which is different from 0v1 + 0v2 = 0. Thus, v1, v2 is linearly dependent. In general, any list of vectors that
contains 0⃗ is linearly dependent.

Example 3.15
Suppose V = C3 and

v1 = (1, 2, 3), v2 = (2, 3, 4), v3 = (3, 4, 5).

Is v1, v2, v3 linearly independent?

It is easy to see by observation that

v2 − v1 = v3 − v2 = (1, 1, 1).

This implies that
2v2 − v1 − v3 = 0⃗,

so v1, v2, v3 is linearly dependent.
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4 Basis and Dimension

4.1 Review
Last time, we introduced the definition

span(v1, . . . , vm) = {linear combinations of v1, . . . , vm}

where a linear combination of v1, . . . , vm is a vector of the form a1v1 + · · · + amvm for ai ∈ F. Note that
span(v1, . . . , vm) is a subspace of the original vector space V.

Furthermore, we defined a list v1, . . . , vm to be linearly independent if a1v1 + · · ·+ amvm = 0⃗ implies a1 = · · · =
am = 0.

4.2 Span and Linear Independence (continued)
Suppose we choose enough vectors v1, . . . , vm such that span(v1, . . . , vm) is the entire vector space V.

Definition 4.1 (spans, spanning list)
If span(v1, . . . , vm) = V, we say that v1, . . . , vm spans V or v1, . . . , vm is a spanning list of V.

Intuitively, if we want to span a three-dimensional space, we need a list of at least 3 vectors to span the entire
space. Soon, we will introduce the notion of dimension, and we will see that an n-dimensional vector space
needs a list of at least n vectors to span the entire vector space.

Furthermore, we will see that a list of too many vectors cannot be linearly independent. In particular, a list
of more than n vectors in an n-dimensional vector space cannot be linearly independent. For instance, the
following three vectors in R2

R2

is linearly dependent.

4.3 Bases
Before we introduce bases, we will introduce a key definition in linear algebra.

Definition 4.2 (finite-dimensional vector space)
A vector space V is finite-dimensional if there exists a finite list of vectors v1, . . . , vm that span V.

Note that this is just a qualitative definition, in the way that it doesn’t actually tell you what the dimension of
V is. For most of this course, we will assume that V is finite-dimensional.

Now, we will introduce another important definition.

Definition 4.3 (basis)
A basis of V is a list of vectors v1, . . . , vm that both spans V and is linearly independent.

The spanning requirement makes sure the list of vectors is not too small, while the linearly independent
requirement makes sure that the list is not too big. Eventually, we will show that the length of any basis of V
is equal to the dimension of V.
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Thus, the cardinality of a basis5 is an invariant of V. In other words, if v1, . . . , vm and w1, . . . , wn are both
bases of V, then m = n.

Consider the following example of a basis, known as the standard basis of Rn.

Example 4.4
Recall Rn = {(x1, . . . , xn) | xi ∈ R}. Let

e1 = (1, 0, . . . , 0),

e2 = (0, 1, 0, . . . , 0),

...
en = (0, . . . , 0, 1).

To check if e1, . . . , en is a basis, we need to check:

• e1, . . . , en span Rn,

• e1, . . . , en are linearly independent.

To show that e1, . . . , en spans, we wish to find a1, . . . , an ∈ F such that

(x1, . . . , xn) = a1e1 + · · ·+ anen

for any (x1, . . . , xn) ∈ Rn. It is clear that this can be done by setting ai = xi. To prove linear independence,
note that a1e1 + · · ·+ anen = (a1, . . . , an). Thus, if

a1e1 + · · ·+ anen = (a1, . . . , an) = 0⃗,

then a1 = · · · = an = 0, so e1, . . . , en is linearly independent.

Therefore, e1, . . . , en is a basis of Rn.

Consider a more abstract example of a basis.

Example 4.5
Suppose v1, v2 is a basis of V. We wish to show that v2, v1 − v2 is also a basis of V.

First, we will show that v2, v1− v2 spans V. Since we know that v1, v2 spans V, then showing that v1 and v2
are linear combinations of v2, v1−v2 is sufficient to prove that v2, v1−v2 spans V. Because v1 = v2+(v1−v2)
and v2 = v2, it follows that v2, v1 − v2 spans V.

The verification that v2, v1 − v2 is linearly independent is left as an exercise.

The above example shows us that if we are given a basis, we can make modifications to it (e.g. combinations,
permutations) to make a new basis.

Student Question. Shouldn’t there be another condition in Definition 4.3, which is that the cardinality of any
basis of V is invariant?

Answer. The two conditions in Definition 4.3 actually are enough to imply that the cardinality of any basis of
V is invariant, which is a result we will prove later in this lecture.

Now, we will introduce a technique that is very useful to proving the above statement.
5Cardinality denotes the number of elements. Thus, the cardinality of a basis is the number of vectors in the basis.
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Algorithm 4.6 (Vector Deletion Algorithm)
The Vector Deletion Algorithm takes in a list of vectors v1, . . . , vm and outputs a sublist vi1 , . . . , vil (1 ≤
i1 < · · · < il ≤ m) such that

• span(vi1 , . . . , vil) = span(v1, . . . , vm),

• vi1 , . . . , vil is linearly independent.

The algorithm consists of scanning each vector exactly once:

• Step 1: If v1 = 0, delete v1, Otherwise, keep v1.

• Step j: If vj ∈ span(v1, . . . , vj−1), delete vj . Otherwise, keep vj .

Note that the condition vj ∈ span(v1, . . . , vj−1) can be simplified to

vj ∈ span(current sublist of v1, . . . , vj−1),

where the current sublist of v1, . . . , vj−1 represents all vectors remaining in the list after Step j− 1 of the Vector
Deletion Algorithm.

Student Question. As an example, what if v2 is in span(v5, v6)?

Answer. We don’t care! At each step, we only look at the span of the previous vectors. In a later step, the
algorithm would remove v5 or v6 (or both) from the list.

Student Question. What if we perform the Vector Deletion Algorithm on 0⃗, . . . , 0⃗?

Answer. We would delete v1 since v1 = 0⃗. Additionally, 0⃗ is in the span of any list of vectors (even the empty
list), so we remove all vectors. Thus, the output would be the empty list.

Consider the following example of the Vector Deletion Algorithm.

Example 4.7
Suppose V = R2. We wish to perform the Vector Deletion Algorithm on

0⃗, e1, e1 + e2, e1 − e2

where e1, e2 is the standard basis of R2.

The algorithm deletes v1 = 0⃗, keeps v2 = e1 and v3 = e1 + e2, and deletes v4 = e1 − e2 = 2e1 − (e1 + e2) =
2v2 − v3. Thus, the output is e1, e1 + e2.

Now, we will use the Vector Deletion Algorithm to prove some results.

Proposition 4.8
Suppose v1, . . . , vm span V. Then, there exists a sublist of v1, . . . , vm that is a basis of V.

Proof. Apply VDA to v1, . . . , vm. The output will be a sublist vi1 , . . . , vil such that span(vi1 , . . . , vil) =
span(v1, . . . , vm) = V and vi1 , . . . , vil is linearly independent. Therefore, vi1 , . . . , vil is a basis of V.

Note that while we claimed that the output of the Vector Deletion Algorithm is always linearly independent,
we haven’t rigorously proved it yet. Thus, we will prove it now.

Lemma 4.9
The output of the Vector Deletion Algorithm is linearly independent.

Proof. We will prove this by contradiction. Suppose the output vi1 , . . . , vil is linearly dependent. It follows that
a1vi1 + · · ·+ alvil = 0⃗ for scalars a1, . . . , al ∈ F that are not all zero. Let ar be the last nonzero coefficient in
a1, . . . , al. Since the later coefficients are all zero, it follows that

a1vi1 + · · ·+ arvir = 0⃗.
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We can solve for vir to get

vir = − 1

ar
(a1vi1 + · · ·+ ar−1vir−1

).

From the above equation, it is clear that vir ∈ span(vi1 , . . . , vir−1
). However, this implies that vir should have

been deleted by VDA, which is a contradiction. Therefore, vi1 , . . . , vil is linearly independent.

Another property of the Vector Deletion Algorithm is that if v1, . . . , vr are linearly independent, then the output
of VDA also starts with v1, . . . , vr. In other words, no vector among v1, . . . , vr is deleted by the VDA. This can
be seen by the fact that if v1, . . . , vj is linearly independent, then vj /∈ span(v1, . . . , vj−1).

We will use the above property to prove the following result.

Proposition 4.10
Suppose v1, . . . , vm is linearly independent. Then, there exists vm+1, . . . , vn such that v1, . . . , vm, vm+1, . . . , vn
is a basis of V.

Proof. Since V is finite-dimensional,6 there exists vectors w1, . . . , wk that span V. Then, the list

v1, . . . , vm, w1, . . . , wk

spans V. Therefore, applying VDA to this list gives an output that spans V and is linearly independent, so
the output is a basis of V. Since v1, . . . , vm is linearly independent, it follows that the output of VDA must
also contain v1, . . . , vm. Finally, renaming the remaining vectors in the output to vm+1, . . . , vn gives the desired
result.

Note the similarities between Proposition 4.8 and Proposition 4.10. In particular, Proposition 4.8 states that if
we have a spanning list (possibly too many vectors for a basis), then we can delete some vectors to form a basis
of V. On the other hand, Proposition 4.10 stats that if we have a linearly independent list of vectors (possibly
too few vectors), then we can add some vectors to form a basis of V.

4.4 Dimension
Now, we are ready to prove that the number of vectors in a basis is invariant.

Theorem 4.11
Suppose v1, . . . , vm and w1, . . . , wn are both bases of V. Then, m = n.

Proof. Let B0 = (v1, . . . , vm). Add w1 to this list to form B+
1 = (w1, v1, . . . , vm). Then, B+

1 spans V, but B+
1 is

not linearly independent because v1, . . . , vm already spans V, so w1 can be expressed as a linear combination
of v1, . . . , vm. Apply VDA to B+

1 to obtain output B1. By Proposition 4.8, B1 is a basis. Also, since w1 ̸= 0,
B1 must contain w1. Finally, since B+

1 is not linearly independent, VDA must delete at least one vector, so
|B1| ≤ m.7

Now, add w2 to this list to form B+
2 = (w2, B1). By similar logic, B+

2 spans V and is linearly dependent. Thus,
applying VDA to B+

2 gives output B2 that is a basis and starts with w2, w1, because all the wi’s are linearly
independent. Once again, VDA must delete at least one vector, so |B2| ≤ |B1| ≤ m.

Repeating this process n times, we find that Bn is a basis starting with wn, . . . , w1. However, wn, . . . , w1 is
already a basis, so Bn contains no other vectors. Furthermore, |Bn| ≤ m, so n ≤ m.

Finally, reversing the roles of v1, . . . , vm and w1, . . . , wn (by letting B0 = (wn, . . . , wn) and adding vi’s) shows
that m ≤ n. Therefore, m = n.

Now, we have a well-defined definition of dimension.
6Unless stated otherwise, we will assume V is finite-dimensional for all results in this course.
7The notation |B1| represents the number of elements in B1.
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Definition 4.12 (dimension)
The dimension of V, denoted dimV, is n if there exists a basis of V consisting of n vectors.

We can also use the notation dimF V to emphasize the dimension over field F, where F = R or C.

4.5 Polynomials
While we ran out of time in the lecture, the following concepts on polynomials will show up often in the course.

Definition 4.13 (polynomial)
A function p : F → F is called a polynomial if there exist scalars a0, . . . , am ∈ F such that

p(z) = a0 + a1z + a2z
2 + · · ·+ amz

m

for all z ∈ F.

P(F) is the set of all polynomials with coefficients in F.

Definition 4.14 (degree of a polynomial)
A polynomial p ∈ P(F) has degree m, denoted degm = p, if there exist scalars a0, . . . , am ∈ F with am ̸= 0
such that

p(z) = a0 + a1z + a2z
2 + · · ·+ amz

m

for all z ∈ F.

The zero polynomial is defined to have degree −∞

Definition 4.15 (Pm(F))
For nonnegative integer m, Pm(F) denotes the set of all polynomials with coefficients in F and degree at
most m.

Example 4.16
Pm(F) is a finite-dimensional vector space for any nonnegative integer m.
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5 Dimension (continued), Linear Maps, and Matrices

5.1 Review
Last time, we introduced the notion of a basis. In particular, a list of vectors v1, . . . , vn is a basis of V if

• span(v1, . . . , vn) = V,

• v1, . . . , vn is linearly independent.

Additionally, we showed that the number of vectors in a basis is an invariant of V. Thus, we defined the dimension
of V as the number of vectors in any basis of V.

5.2 Dimension (continued)
Consider the following basic examples of dimension.

Example 5.1
Consider Fn. We have dimFn = n with one basis being the standard basis of Fn.

Recall the standard basis is the list of vectors e1, . . . , en, where ei has 1 at the ith place and 0’s elsewhere.

Example 5.2
Recall

Pm(F) = {a0 + a1z + · · ·+ amz
m | ai ∈ F}.

In other words, Pm(F) is the set of all polynomials with degree at most m.

We claim that 1, z, z2, . . . , zm is a basis of PM (F). It is clear that 1, z, z2, . . . , zm span by the definition of
Pm(F). To prove linear independence, we need to show that a0 + a1z + · · ·+ amz

m = 0 implies a0 = a1 =
· · · = am = 0. It is a known fact in algebra that a polynomial of degree m can have at most m distinct
roots, so it cannot vanish for all values of z. Therefore, a0 = a1 = · · · = am = 0.

Thus, 1, z, z2, . . . , zm forms a basis, so dimPm(F) = m+ 1.

Now, consider the following result relating dimension to spanning lists and linear independence.

Proposition 5.3
Suppose v1, . . . , vn is a list of vectors in V. Then,

1. If v1, . . . , vn is linearly independent, then n ≤ dimV. Moreover, if n = dimV, then v1, . . . , vn is a
basis.

2. If v1, . . . , vn span V, then n ≥ dimV. Moreover, if n = dimV, then v1, . . . , vn is a basis.

Proof. To prove (1), recall by Proposition 4.10 that v1, . . . , vn can be extended to a basis v1, . . . , vn, vn+1, . . . , vm
of V. It follows that dimV = m ≥ n. Furthermore, if m = n, then v1, . . . , vn is already a basis of V.

To prove (2), recall by Proposition 4.8 that there exists a sublist vi1 , . . . , vir that is a basis of V. It follows that
dimV = r ≤ n. Furthermore, if r = n, then v1, . . . , vn is already a basis of V.

This result is very useful because it asserts that we only need to verify one of the two conditions of a basis (linear
independence and span) given that a list of vectors is the right length. The next example will demonstrate this.
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Example 5.4
Consider the polynomials 1, z, z(z − 1), z(z − 1)(z − 2), . . . , z(z − 1) · · · (z − (m − 1)). Is this a basis of
Pm(F)?

First, we can consider some simple cases.

• For m = 1, we have the list 1, z, which is a basis.

• For m = 2, we have 1, z, z(z − 1). To prove linear independence, suppose

a+ bz + cz(z − 1) = 0

for scalars a, b, c ∈ F. Expanding, we get cz2+(b− c)z+a = 0, which has only solution a = b = c = 0.
Therefore, 1, z, z(z − 1) is linearly independent. Additionally, we can show that

a+ bz + cz(z − 1) = a0 + a1z + a2z
2

has solution (a, b, c) = (a0, a1 + a2, a2), so 1, z, z(z − 1) spans V. Therefore, this list is a basis.

Now, we will return to the general case. We claim that 1, z, z(z − 1), z(z − 1)(z − 2), . . . , z(z − 1) · · · (z −
(m− 1)) is linearly independent. For the sake of contradiction, suppose

a0 + a1z + a2z(z − 1) + · · ·+ amz(z − 1) · · · (z − (m− 1)) = 0

for scalars a0, a1, . . . , am ∈ F that are not all zero. Let aj be the last nonzero coefficient of a0, a1, . . . , am.
It follows that

a0 + a1z + · · ·+ ajz(z − 1) · · · (z − (j − 1)) = 0.

By observation, we see that the coefficient of the zj term is aj . However, since aj ̸= 0 it follows that the
left-hand side is nonzero, which is a contradiction. Therefore, 1, z, z(z − 1), z(z − 1)(z − 2), . . . , z(z −
1) · · · (z − (m− 1)) is linearly independent.

Finally, since the number of vectors in 1, z, z(z − 1), z(z − 1)(z − 2), . . . , z(z − 1) · · · (z − (m− 1)) is equal
to dimPm(F), it follows that 1, z, z(z − 1), z(z − 1)(z − 2), . . . , z(z − 1) · · · (z − (m − 1)) is a basis by
Proposition 5.3.

Now, we will look at the dimension of a sum of subspaces.

Proposition 5.5
Suppose U1, U2 are subspaces of V. Then,

dim(U1 + U2) = dimU1 + dimU2 − dim(U1 ∩ U2).

Proof. Suppose u1, . . . , un is a basis of U1 ∩ U2. Since this list is linearly independent, we can extend this list
to a basis u1, . . . , un, v1, . . . , vm of U1. Similarly, we can extend this list to a basis u1, . . . , un, w1, . . . , wk of U2.

Now, we claim that u1, . . . , un, v1, . . . , vm, w1, . . . , wk is a basis of U1 + U2. This will give us

dim(U1 + U2) = n+m+ k

= (n+m) + (n+ k)− n

= dimU1 + dimU2 − dim(U1 ∩ U2),

which will complete the proof.

It is clear that span(u1, . . . , un, v1, . . . , vm, w1, . . . , wk) contains both U1 and U2, and thus also contains U1+U2.
To prove linear independence, suppose

a1u1 + · · ·+ anun + b1v1 + · · ·+ bmvm + c1w1 + · · ·+ ckwk = 0

where all ai’s, bi’s, and ci’s are scalars. Rearranging, we get

c1w1 + · · ·+ ckwk = −a1u1 − · · · − anun − b1v1 − · · · − bmvm.
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All the wi’s are in U2, so c1w1+· · ·+ckwk ∈ U2. Furthermore, all ui’s and vi’s are in U1, so c1w1+· · ·+ckwk ∈ U1

as well. It follows that c1w1 + · · ·+ ckwk ∈ U1 ∩ U2. Since u1, . . . , un is a basis of U1 ∩ U2, we can write

c1w1 + · · ·+ ckwk = d1u1 + · · ·+ dnun

for scalars d1, . . . , dn. However, u1, . . . , un, w1, . . . , wk is linearly independent because it forms a basis, so all
ci’s and di’s must be equal to 0. In particular, all ci’s are equal to 0, so we have

a1u1 + · · ·+ anun + b1v1 + · · ·+ bmvm = 0.

However, u1, . . . , un, v1, . . . , vm is also linearly independent because it forms a basis, so all ai’s and bi’s are 0.
Therefore, u1, . . . , un, v1, . . . , vm, w1, . . . , wk is linearly independent and thus is a basis of U1+U2, as desired.

This result is analogous to the inclusion-exclusion principle in discrete math, which states that |X1 ∪ X2| =
|X1| + |X2| − |X1 ∩X2| for sets X1, X2. Furthermore, note that we cannot use Proposition 5.3 for the above
proof because dim(U1 + U2) is unknown.

A special case of the above result is when U1+U2 forms a direct sum, U1⊕U2. This implies that U1 ∩U2 = {⃗0},
which has dimension 0.8 Thus, dim(U1 ⊕ U2) = dimU1 + dimU2.

Student Question. Does Proposition 5.5 generalize to the sum of n vector spaces, U1 + · · ·+ Un?

Answer. Yes, the formula actually takes the same form as the inclusion-exclusion principle. You can read
about the inclusion-exclusion principle more here: https: // en. wikipedia. org/ wiki/ Inclusion% E2% 80%
93exclusion_ principle .

5.3 Linear Maps
So far, we have focused on vector spaces. Now, we will discuss how we can relate two different vector spaces,
using linear maps.

Definition 5.6 (linear map)
Suppose V,W are vector spaces over F. A map T : V →W is called a linear map if it satisfies:

• additivity:
T (v1 + v2) = T (v1) + T (v2) for all v1, v2 ∈ V ;

• homogeneity:
T (cv) = c · T (v) for all c ∈ F and all v ∈ V.

Note that the equation T (v1 + v2) = T (v1) + T (v2) uses two different additions; the left-hand side uses abstract
addition in V while the right-hand side uses abstract addition in W. Similarly, the left-hand side of T (cv) = c·T (v)
uses abstract scalar multiplication in V while the right-hand side uses abstract scalar multiplication in W.

Example 5.7
Suppose T : R2 → R3 is defined by

T (x, y) = (3x− y, x+ y, 5x− y).

Then, T is a linear map, the verification of which is left as an exercise. On the other hand, suppose

T (x, y) = (3x− y − 1, x+ y, 5x− y).

While 3x− y − 1 may be considered a linear function in calculus, T is actually not a linear map.

To show that T (x, y) = (3x− y − 1, x+ y, 5x− y) is not a linear map, consider the following result.

Lemma 5.8
Suppose T : V →W is a linear map. Then, T (⃗0) = 0⃗.

8The zero vector space {0⃗} has the empty set as a basis, which is why dim{0⃗} = 0.
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Proof. Suppose v ∈ V. Then,
T (⃗0) = T (0v) = 0 · T (v) = 0⃗,

as desired.

We see that T (0, 0) = (−1, 0, 0). Thus, by the above result, T is not a linear map.

Now, we will investigate more examples of linear maps.

Example 5.9
Consider the following simple examples of linear maps:

1. The zero map 0 : V →W defined by 0(v) = 0⃗ for all v ∈ V is a linear map.

2. The identity map idV : V → V defined by idV (v) = v for all v ∈ V is a linear map.

3. For c ∈ F, the map T : V → V defined by T (v) = cv for all v ∈ V is a linear map.

4. The map T : Pm(F) → Pm+1(F) defined by T (p(z)) = zp(z). We can verify that

T (p(z) + q(z)) = z(p(z) + q(z)) = zp(z) + zq(z) = T (p(z)) + T (q(z))

and
T (c · p(z)) = z · c · p(z) = c(zp(z)) = c · T (p(z)),

so T is linear.

5. The map T : Pm(F) → Pm+1(F) defined by T (p(z)) = p′(z). We can verify that

T (p+ q) = (p+ q)′ = p′ + q′ = T (p) + T (q)

and
T (cp) = (cp)′ = cp′ = c · T (p),

so T is linear.

6. The map T : Pm(F) → F defined by T (p(z)) = p(1). We can verify that

T (p+ q) = (p+ q)(1) = p(1) + q(1) = T (p) + T (q)

and
T (cp) = (cp)(1) = c · p(1) = c · T (p),

so T is linear.

5.4 Matrices
Consider the linear map from Example 5.7:

T (x, y) = (3x− y, x+ y, 5x− y).

We wish to represent this linear map using a matrix, which we do by taking the coefficients on the right-hand
side and putting them into each of the rows: 3 −1

1 1
5 −1

 .

Thus, we represent a linear map T : R2 → R3 with a 3×2 matrix.

Now, let’s construct this matrix in a different way. Let us calculate where T maps each of the basis vectors
e1, e2 of R2 :

Te1 = T (1, 0) = (3, 1, 5)

Te2 = T (0, 1) = (−1, 1,−1).
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Then, putting these vectors into the columns gives the same 3×2 matrix3 −1
1 1
5 −1

 .

In general, the latter method allows us to find the matrix representation of any linear map with abstract vector
spaces T : V →W. In particular, the matrix will be of size dimW× dimV.

First, we will consider a simpler case where V,W are not completely generalized.

Example 5.10
Suppose T : Fn → Fm is a linear map. The matrix representation of T is[

T (e1) · · · T (en)

]
,

where e1, . . . , en is the standard basis of Fn and T (e1), . . . , T (en) are written as column vectors of length
m. Thus, this matrix has size m×n.

In the general case where T : V →W is a linear map, choose a basis v1, . . . , vn of V and a basis w1, . . . , wm of
W. Then, T (vi) ∈W, so it can be expressed as a linear combination of wi’s:

T (v1) = a11w1 + a21w2 + · · ·+ am1wm

T (v2) = a12w1 + a22w2 + · · ·+ am2wm

...
T (v2) = a1nw1 + a2nw2 + · · ·+ amnwm.

Then, a matrix representation of T, denoted M(T ), is

M(T ) =


a11 a12 · · · a1n
a21 a22 · · · a2n
...

...
...

am1 am2 · · · amn

 .

Thus, the general rule to express T (vi) as a linear combination of w1, . . . , wm and put the coordinates of T (vi)
as the ith column of M(T ).
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Example 5.11
Suppose T : P3(F) → P2(F) defined by T (p(z)) = p′(z). By Example 5.9, T is a linear map. We wish to
find M(T ).

We choose 1, z, z2, z3 as a basis of P3(F) and 1, z, z2 as a basis of P3(F). Then, we calculate T applied to
each of the basis vectors of P3(F) :

T (1) = 0 = 0 · 1 + 0z + 0z2

T (z) = z′ = 1 = 1 · 1 + 0z + 0z2

T (z2) = (z2)′ = 2z = 0 · 1 + 2z + 0z2

T (z3) = (z3)′ = 3z2 = 0 · 1 + 0z + 3z2.

Putting the coefficients of the 1, z, z2 terms into the columns of a matrix, we find that

M(T ) =

0 1 0 0
0 0 2 0
0 0 0 3


with respect to the chosen bases. However, note that M(T ) is dependent on choice of basis. For instance,
suppose we choose 1, z, z(z − 1) as a basis of P2(F). Then,

T (1) = 0 · 1 + 0z + 0z2

T (z) = 1 · 1 + 0z + 0z2

T (z2) = 0 · 1 + 2z + 0z2

T (z3) = 0 · 1 + 3z + 3z2.

Thus, we find that the matrix representation of T with respect to this basis is

M(T ) =

0 1 0 0
0 0 2 3
0 0 0 3

 .
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6 Matrices (continued) and Matrix Multiplication

6.1 Review
Last time, we introduced he notion of linear maps and related them with matrices. Suppose T : V → W is a
linear map. Then, T satisfies

• T (v1 + v2) = T (v1) + T (v2),

• T (λv) = λT (v) for λ ∈ F.

Also, an m×n matrix takes the form

A =


A1,1 A1,2 · · · A1,n

A2,1 A2,2 · · · A2,n

...
...

...
Am,1 Am,2 · · · Am,n

 ,

where m is the number of rows and n is the number of columns.9

We can turn a linear map into a matrix by the following steps:

1. Choose a basis v1, . . . , vn of V and a basis w1, . . . , wm of W.

2. Express T (vi) as a linear combination of wj ’s.

3. Put these coefficients into the columns of a matrix:

M(T ) =

[
T (e1) · · · T (en)

]
.

6.2 Matrices Under Different Bases
Recall that the matrix of a linear map T : V →W depends on the chosen bases of V and W. In this section, we
will investigate matrices representing the same linear map under different bases.

In all of the following examples, suppose we have the matrix of a linear map T : V →W with respect to bases
v1, . . . , vn of V and w1, . . . , wm of W.

Example 6.1
Suppose we wish to find the matrix of T using w2, w1, w3, . . . , wm as a basis of W. We have

T (v1) = c1v1 + c2w2 + · · · cnwn

= c2v2 + c1w1 + · · · cnwn.

Thus, we can express the first column of M(T ) with respect to w2, w1, w3, . . . , wm as
c2 · · · · · ·
c1
c3 · · · · · ·
...
cn · · · · · ·

 .

Extending this logic to all T (vi), we see that

M(T, (w2, w1, w3, . . . , wm)) = swap first two rows of M(T, (w1, . . . , wm)).

9Note that a 1×n matrix is often called a row vector and a n×1 matrix is often called a column vector.
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Example 6.2
Similarly, suppose we wish to find the matrix of T with respect to the basis v2, v1, v3, . . . , vn of V. By similar
logic, we can show that

M(T, (v2, v1, v3, . . . , vn)) = swap first two rows of M(T, (v1, . . . , vn)).

Example 6.3
Suppose we wish to find the matrix of T using w1 + w2, w2, w3, . . . , wm as a basis of W. We have

T (v1) = c1w1 + c2w2 + · · ·+ cmwm

= c1w1 + (c2 − c1)c2 + · · ·+ cmwm.

It follows that the first column of M(T ) with respect to w1 + w2, w2, w3, . . . , wm is
c1 · · · · · ·

c2 − c1
c3 · · · · · ·
...
cn · · · · · ·

 .

The same logic follows for all columns, so

M(T, (w1 + w2, w2, w3, . . . , wm)) = subtract 1st column from 2nd column of M(T, (w1, . . . , wm)).

There is no need to remember the results from any of these examples; instead, these examples are meant to give
intuition on how to express matrices with respect different bases.

6.3 Matrices and Linear Maps
In terms of notation, we write Fm,n to denote the set of all m×n matrices with entries in F. We also write
L(V,W ) to represent the set of all linear operators from V to W.

We have spent the last few sections showing how we can express any linear map T ∈ L(V,W ) as a matrix
M(T ) ∈ Fm,n. If we fix bases (vi) and (wj) of V and W, respectively, this creates a map L(V,W ) → Fm,n.10

Guiding Question
Suppose T ∈ L(V,W ) has matrix representation M(T ) ∈ Fm,n. What are m and n in terms of the
dimensions of V and W?

Answer. The columns of M(T ) is the coordinates of vectors in W. Thus, the number of rows should be
m = dimW and the number of columns should be n = dimV. This question should hopefully be review.

Now, we will prove an important result relating L(V,W ) and Fm,n.

Proposition 6.4
The map that sends a linear operator T ∈ L(V,W ) to its matrix representation M(T ) ∈ Fm,n is a bijection.

Proof. To prove that this map is a bijection, it is sufficient to construct an inverse map. Thus, for any matrix
A ∈ Fm,n, we wish to construct a map that sends A to a linear operator TA ∈ L(V,W ) such that M(TA) = A.
Suppose v1, . . . , vn and w1, . . . , wm are bases of V and W, respectively. Note that the condition M(TA) = A

10To emphasize the bases of V and W when writing the matrix of an operator, we write M(T, (vi), (wj)) to denote the matrix
of T ∈ L(V,W ) with respect to bases (vi) and (wj) of V and W, respectively.
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implies that

TA(v1) = A11w1 + · · ·Am1wm

TA(v2) = A12w1 + · · ·Am2wm

...
TA(vn) = A1nw1 + · · ·Amnwm.

The right-hand side of each equation is some arbitrary vector in W, which we can denote u1, . . . , un :

TA(v1) = u1, TA(v2) = u2, . . . , TA(vn) = un.

Now, we will show that TA exists. Since v1, . . . , vn is a basis, we can express any v ∈ V as v = a1v1 + · · ·+ anvn
for scalars a1, . . . , an. Since TA is linear, we have

TA(v) = TA(a1v1 + · · ·+ anvn)

= a1T (v1) + · · ·+ anT (vn)

= a1u1 + · · ·+ anun.

Since a1, . . . , an are uniquely determined, it follows that TA maps any v ∈ V to exactly one vector in W, so TA
exists.11

Now, we will show that the map that sends A to TA is an inverse of T. To do this, we need to show:

• TA = T for T 7→ M(T ) = A 7→ TA,

• M(TA) = A for A 7→ TA 7→ M(TA)

We will only prove the first point above; the second follows similarly and is left as an exercise for the reader.
We know that

TA(vi) = A1iw1 + · · ·Amiwm.

However, we also know that the ith column of A is the coordinates of T (vi) with respect to w1, . . . , wm. In other
words,

T (vi) = A1iw1 + · · ·Amiwm.

Since v1, . . . , vn is a basis, it follows that TA = T, as desired.

The above result shows that the abstract set of linear maps L(V,W ) can be concretely identified by m×n
matrices.

Note that Fm,n is simply a rectangular grid of mn numbers. Thus, we can view Fm,n as a vector space with
dimension mn, with addition defined as element-wise addition and scalar multiplication defined as element-wise
scalar multiplication. To put it more rigorously, addition is defined as (A + B)ij = Aij + Bij and scalar
multiplication is defined as (cA)ij = cAij .

Now, since L(V,W ) and Fm,n are bijective by Proposition 6.4, we can also view L(V,W ) as a vector space, so
we define addition and scalar multiplication in L(V,W ). Suppose S, T ∈ L(V,W ), so S, T are linear maps from
V to W. We can define addition as

(S + T )(v) = S(v) + T (v).

Note that the + symbol on left-hand side represents abstract addition in L(V,W ), while the + symbol on the
right-hand side represents abstract addition in W. Similarly, for c ∈ F, we define scalar multiplication as

(cT )(v) = c · T (v).

Once again, note that the left-hand side uses scalar multiplication in L(V,W ), while the right-hand side uses
scalar multiplication in W. The verification that L(V,W ) is a vector space with respect to these definitions of
addition and scalar multiplication is left as an exercise to the reader.

This gives the following result.
11As an exercise, prove rigorously that TA is linear.
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Theorem 6.5
L(V,W ) is a vector space.

Additionally, we can show that the map M : L(V,W ) → Fm,n that sends T to M(T ) is a linear map. To do
this, for S, T ∈ L(V,W ) and c ∈ F, we need to show

• M(S + T ) = M(S) +M(T ),

• M(cT ) = c · M(T ).

The details of the proof are left as an exercise to the reader.

6.4 Matrix Multiplication
Before we define matrix multiplication, we will first discuss composition of linear maps. Suppose U, V,W are
vector spaces and S, T are linear maps such that S ∈ L(U, V ) and T ∈ L(V,W ). Then, the composition of S
and T is the map TS ∈ L(U,W ) :

U V W
S T

TS

The verification that TS is linear is left as an exercise.

Guiding Question
How do we express the composed map TS as a matrix?

Suppose u1, . . . , uk, v1, . . . , vn, and w1, . . . , wm are bases of U, V, and W respectively. Then, denote M(S) as
the n×k matrix A and M(T ) as the m×n matrix B.

Now, we will compute M(TS). For brevity, denote M(TS) = C. First, we will find the first column of C. We
have

(TS)(u1) = T (S(u1))

= T (A11v1 + · · ·+An1vn)

= A11T (v1) + · · ·+An1T (vn)

= A11(B11w1 + · · ·+Bm1wm) + · · ·+An1(B1nw1 + · · ·+Bm1wn)

= (A11B11 + · · ·+An1B1n)w1 + · · ·+ (A11Bm1 + · · ·+An1Bmn)wm

=

m∑
j=1

(
n∑

i=1

Ai,1Bj,i

)
wj .

It follows that

Cj1 =

n∑
i=1

Ai,1Bj,i.

Generalizing to the kth column of C, we find that

Cjk =

n∑
i=1

Ai,kBj,i.

Thus, we now have defined matrix multiplication. In the next lecture, we will show the usefulness of this
definition.
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7 Matrix Multiplication (continued), Null Space, and Range

7.1 Review
Last time, we ended with the notion of composition of linear maps:

U V W
S T

TS

Note the order of the linear maps: applying TS is equivalent to first applying S, then T. Then, we computed
the matrix of TS in terms of the matrices of S and T. Recall from the end of last lecture that for M(S) =
A,M(T ) = B, and M(TS) = C, we have

Cjk =

n∑
i=1

Ai,kBj,i.

7.2 Matrix Multiplication (continued)
The above formula motivates the following definition.

Definition 7.1 (matrix multiplication)
Suppose B is an m×n matrix and A is an n×k matrix. The product BA is the matrix with entries

(BA)ij =

k∑
r=1

Bi,rAr,j .

Note that this is the same formula as in Section 7.1 with variables rearranged. To visualize this formula, we
can interpret matrix B as consisting of m rows and matrix A consisting of k columns:

B (m rows)
A (k columns)

The product is only defined if the length of each column of B matches the length of each column of A. To find
a specific entry in the product BA, we take the dot product of the ith column of B and the jth row of A. For
example, taking the dot product of the two highlighted lines in the above diagram gives (BA)3,2.

Our previous calculations give us the following result.

Theorem 7.2
Suppose S ∈ L(U, V ) and T ∈ L(V,W ). Then, M(TS) = M(T )M(S).

Note that the left-hand side uses the notion of composition of linear maps while the right-hand side uses matrix
multiplication. In fact, our definition of matrix multiplication was constructed such that the above result
holds. While you have likely seen the formula for matrix multiplication previously, here we have presented the
motivation for defining matrix multiplication the way it is.

7.3 Properties of Matrix Multiplication
Whenever we have a property of composition of linear maps, there is an analogous property for matrix multipli-
cation.
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Fact 7.3 (Associativity)
Suppose U, V,W, and X are vector spaces and R ∈ L(U, V ), S ∈ L(V,W ), and T ∈ L(W,X). The following
picture

U V W X
R S T

SR

T (SR)

TS

(TS)R

shows that T (SR) = (TS)R, so composition is associative.

Consequently, this result shows that matrix multiplication is associative. In particular, suppose A,B, and
C are matrices such that BA and CB are defined.a Then, C(BA) = (CB)A.

aRecall that the product BA is defined when the number of columns in B is the same as the number of rows in A. The
same requirement holds for CB.

Remark. Suppose A and B are matrices. In general, matrix multiplication is not commutative (e.g. AB ̸= BA).
The following two reasons contribute to this fact:

• First, AB and BA may not both be defined or have different size. Suppose A is size n×k and B is size
m×n. Then, product BA is defined, but AB is only defined when k = m. Even if both products are defined
(e.g. k = m), then AB is size n×n and BA is size m×m, so the products will have different size unless
m = n.

• Suppose AB and BA are both defined and have the same size, which implies that both A and B are n×n
matrices. Then, it is still true in general that AB ̸= BA. For instance, consider

A =

(
0 1
0 0

)
, B =

(
0 0
1 0

)
.

We calculate
AB =

(
1 0
0 0

)
̸=
(
0 0
0 1

)
= BA.

Fact 7.4 (Distributivity)
Suppose U, V, and W are vector spaces. Let S ∈ L(U, V ) and T1, T2 ∈ L(W ) :

U V W
S T1

T2

Then, (T1 + T2)S = T1S + T2S. Now, let S1, S2 ∈ L(U, V ) and T ∈ L(W ) :

U V W
S1

S1

T

Then, T (S1+S2) = TS1+TS2. Thus, composition of linear maps is distributive, which implies that matrix
multiplication is also distributive.

Consider the following special case. Let V be a vector space and consider the set of all linear maps from V to
itself L(V, V ), also denoted as L(V ). Then, composition is a binary operation on L(V ), since for S, T ∈ L(V ),
it follows that TS ∈ L(V ). By Fact 7.3 and Fact 7.4, composition is associative and distributive. Additionally,
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L(V ) has an identity element idV , which satisfies idV (v) = v for all v ∈ V and S = idV S = SidV for all
S ∈ L(V ).

This shows that L(V ) is a ring, which is an algebraic structure equipped with addition and multiplication.
Addition in L(V ) is defined by the addition of linear maps, and multiplication is defined by the composition of
linear maps.

Additionally, by choosing any basis of V, we can form a bijection between L(V ) and Fn,n. Thus, it follows that
Fn,n is also a ring, where multiplication is defined by matrix multiplication.

Remark. When working with matrices, it is important to differentiate scalar multiplication and matrix mul-
tiplication. Scalar multiplication is when you multiply a matrix by a number c, resulting in a matrix of the
same size. Matrix multiplication involves multiplying two matrices BA and the product has the same number of
columns as A and the same number of rows as B.

However, scalar multiplication is actually a special case of matrix multiplication. For any c ∈ F, suppose we
wish to find

c

(
1 2 3
4 5 6

)
=

(
c 2c 3c
4c 5c 6c

)
=

(
? ?
? ?

)(
1 2 3
4 5 6

)
.

Let A be the matrix on the left-hand side. We can see that A is the matrix of a linear map from F3 to F2. Then,
to multiply by the scalar c, we must apply c · idF2 , which gives us the composition

F3 A−→ F2 c·idF2−−−→ F2.

Thus, the matrix on the right-hand side should be M(c · idF2), so

c

(
1 2 3
4 5 6

)
=

(
c 2c 3c
4c 5c 6c

)
=

(
c 0
0 c

)(
1 2 3
4 5 6

)
.

For this reason, we denote scalar matrices as matrices of the formc 0
. . .

0 c


for any c ∈ F, and these matrices are equivalent to M(c · idV ) for any vector space V.

Lastly, there is another way to interpret scalar multiplication as a special case of matrix multiplication, which
will be left as an exercise to figure out (Hint: in the above example, we found a matrix to left-multiply with A;
what if we try to find a matrix to right-multiply with A?).

7.4 Meaning of Ad
Suppose A is a m×n matrix and d is a n×1 column vector. Thus, the product Ad is a m×1 column vector.
Now, we will explain the meaning of Ad in terms of linear maps.

Let A = M(T ) for some linear map T ∈ L(V,W ) with respect to bases v1, . . . , vn of V and w1, . . . , wm of W.
Let di denote the ith entry of d. Define v = d1v1 + · · ·+ dnvn. We wish to write T (v) as a linear combination of
w1, . . . , wm. First, we can express this as

T (v) = d1T (v1) + · · ·+ dnT (vn) =

n∑
i=1

diT (vi).

Also, since A = M(T ), we know that

T (vi) = A1iw1 + · · ·+Amiwm =

m∑
j=1

Ajiwj .
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Then, we have

T (v) =

n∑
i=1

diT (vi)

=

n∑
i=1

di

 m∑
j=1

Ajiwj


=

m∑
j=1

(
n∑

i=1

Ajidi

)
wj .

Thus, we have expressed T (v) as a linear combination of w1, . . . , wm.

Now, let (Ad)j denote the jth entry of Ad. By the formula for matrix multiplication,

(Ad)j =

n∑
i=1

Ajidi,

which is the same expression that we got for the coefficient of the wj term in T (v). Therefore, Ad tells us the
"coordinates" of T (v) with respect to the basis w1, . . . , wm.

What is the meaning of multiplying a row vector with a matrix? For instance, suppose r is a 1×m row vector
and A is a m×n matrix. Then, rA is a 1×n row vector. The meaning of rA is not as straightforward, but we
will come back to the meaning of this row vector later in this course.

7.5 Null Space
Now, we will shift our attention away from matrices and back towards linear maps, starting with null spaces.

Definition 7.5 (null space)
Suppose T ∈ L(V,W ). The null space of T, denoted Null(T ), is defined as

Null(T ) = {v ∈ V | T (v) = 0}.

We call it the "null space" because it is actually a subspace.

Proposition 7.6
Suppose T ∈ L(V,W ). Then, Null(T ) is a subspace of V.

Proof. Because T is a linear map, T (⃗0) = 0⃗, so 0⃗ ∈ Null(T ). Suppose v1, v2 ∈ Null(T ). Then,

T (v1 + v2) = T (v1) + T (v2) = 0⃗ + 0⃗ = 0⃗,

so v1 + v2 ∈ Null(T ). Thus, Null(T ) is closed under addition. Now, suppose v ∈ Null(T ) and c ∈ F. Then,

T (cv) = cT (v) = c⃗0 = 0⃗,

so cv ∈ Null(T ). Thus, Null(T ) is closed under scalar multiplication. Therefore, Null(T ) is a subspace.

Additionally, we call dimNull(T ) the nullity of T.

Definition 7.7 (injective)
A map T : V →W is injective if Tu = Tv implies u = v.

If T is injective, we could rephrase the above definition as u ̸= v implies Tu ̸= Tv. In other words, if T is
injective, T maps distinct inputs to distinct outputs.

The above definition is related to null spaces by the following result.
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Theorem 7.8
Suppose T ∈ L(V,W ). Then, Null(T ) = {⃗0} if and only if T is injective.

Proof. First, we will prove the forward direction. Suppose Null(T ) = {⃗0} and v1, v2 ∈ V such that T (v1) = T (v2).
Then,

T (v1 − v2) = T (v1)− T (v2) = 0⃗,

so v1 − v2 ∈ Null(T ). This implies that v1 − v2 = 0⃗, so v1 = v2. Therefore, T is injective.

Now, we will prove the backwards direction. Suppose T is injective. Since T is a linear map, we know that
T (⃗0) = 0⃗, so 0⃗ ∈ Null(T ). Because T is injective, it follows that no other vectors in V can map to 0⃗. Therefore,
Null(T ) = {⃗0}.

The above result is quite interesting; the statement Null(T ) = {⃗0} says that only the zero vector in V can
map to the zero vector in W. From this, we can deduce that for any v1, v2 ∈ V with v1 ≠ v2, it follows that
Tv1 ̸= Tv2.

7.6 Range
Now, we will discuss the range of a linear map, which has many parallels to the null space.

Definition 7.9 (range)
Suppose T ∈ L(V,W ). The range of T, denoted Range(T ), is defined as

Range(T ) = {T (v) | v ∈ V }.

The range of T is also sometimes called the image of T. Note that while Null(T ) is a subset of V, Range(T ) is
a subset of W.

Proposition 7.10
Suppose T ∈ L(V,W ). Then, Range(T ) is a subspace of W.

Proof. The proof is similar to the proof of Proposition 7.6 and is left as an exercise to the reader.

Additionally, we call dimRange(T ) the rank of T.

Definition 7.11 (surjective)
A map T : V →W is surjective if its range equals W.

From the above definition, it is clear that Range(T ) =W if and only if T is surjective.

Example 7.12
Suppose T ∈ L(V,W ). Consider the special case where Range(T ) = {⃗0}. This implies that Tv = 0⃗ for any
v ∈ V, so T is the zero map.

Now, consider the special case where Null(T ) = V. This also implies that Tv = 0⃗ for any v ∈ V, so T is the
zero map.
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Example 7.13
Consider the linear map D : Pm(F) → Pm(F) defined by Dp = p′ for all polynomials p ∈ Pm(F). Then,

Null(D) = {constant polynomials} = P0(F),

so the nullity of D is dimP0(F) = 1.

Now, to findRange(D), note thatRange(D) ⊂ Pm−1(F).Also, note thatD( 1
i+1x

i+1) = xi, so 1, x, x2, . . . , xm−1 ∈
Range(D). Therefore, span(1, x, x2, . . . , xm−1) = Pm−1(F) ⊂ Range(D), so Range(D) = Pm−1(F). It fol-
lows that the rank of D is dimPm−1(F) = m.

Example 7.14
Suppose T ∈ L(F3,F3) such that M(T ) is

A =

1 3 1
2 6 1
0 0 2

 .

Then, Range(T ) is the span of the columns of A, which we can calculate to be

Range(T ) = span

1
2
0

 ,

1
1
2

 .

Thus, the rank of T is 2.

To find Null(T ), we must solve the system of equations1 3 1
2 6 1
0 0 2

xy
z

 =

0
0
0

 .

In this example, we can calculate

Null(T ) = span

 2
−1
0

 ,

so the nullity of T is 1.
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8 Rank-Nullity Theorem, Isomorphisms, Product Space, and Dual
Space

8.1 Review
Last time, we introduced the null space and range of a linear map (Definitions 7.5 and 7.9). For L(V,W ), recall
that Null(T ) is a subset of V and contains all vectors that T sends to 0⃗, while Range(T ) is a subset of W and
contains all vectors in the image of T

8.2 Rank-Nullity Theorem
The next result is one of the most important theorems in linear algebra.

Theorem 8.1 (Rank-Nullity theorem)
Suppose V is finite-dimensional and T ∈ L(V,W ). Then,

dimNull(T ) + dimRange(T ) = dimV.

Proof. Let V1, . . . , vk be a basis of Null(T ). Since this list is linearly independent, it can be extended to a basis
v1, . . . , vn of V. This implies that dimNull(T ) = k and dimV = n.

Now, we will show that T (vk+1), . . . , T (vn) is a basis of Range(T ). First, we will show that this list is linearly
independent. Suppose ck+1, . . . , cn ∈ F such that ck+1T (vk+1) + · · ·+ cnT (vn) = 0⃗. It follows that

T (ck+1vk+1 + · · ·+ cnvn) = 0⃗,

so ck+1vk+1 + · · ·+ cnvn ∈ Null(T ). Because v1, . . . , vk is a basis of Null(T ), there exist c1, . . . , ck ∈ F such that

c1v1 + · · ·+ ckvk = ck+1vk+1 + · · ·+ cnvn.

Thus, c1v1 + · · ·+ ckvk − ck+1vk+1 − · · · − cnvn. Since v1, . . . , vn is a basis, it follows that c1, . . . , cn are all 0.
In particular, ck+1, . . . , cn are all 0, so T (vk+1), . . . , T (vn) is linearly independent.

To show that T (vk+1), . . . , T (vn) span Range(T ), let w ∈ Range(T ). This implies that w = T (v) for some v ∈ V.
Since v1, . . . , vn is a basis, we can write v = c1v1 + · · ·+ cnvn. Then,

w = T (v)

= T (c1v1 + · · ·+ cnvn)

= c1T (v1) + · · ·+ ckT (vk) + ck+1T (vk+1) + · · ·+ cnT (vn)

= ck+1T (vk+1) + · · ·+ cnT (vn)

because v1, . . . , vk ∈ Null(T ), so c1T (v1) + · · ·+ ckT (vk) = 0⃗. Thus, T (vk+1), . . . , T (vn) span Range(T ).

Therefore, T (vk+1), . . . , T (vn) is a basis of Range(T ). It follows that dimRange(T ) = n− k, so

dimNull(T ) + dimRange(T ) = k + (n− k) = n = dimV,

as desired.

The above result is very useful: given that we know dimV, we only need to compute one of dimNull(T ) or
dimRange(T ), and Theorem 8.1 will tell us the other. For instance, suppose T ∈ L(V,W ) and consider the
following cases:

• T is surjective: it follows that Range(T ) =W, so dimNull(T ) = dimV − dimW.

• T is injective: it follows that Null(T ) = {0}, so dimRange(T ) = dimV.
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8.3 Invertible Linear Maps
We will begin this section by defining invertible linear maps.

Definition 8.2 (invertible, inverse)
A linear map T ∈ L(V,W ) is called invertible if there exists a linear map S ∈ L(W,V ) such that ST = idV
and TS = idW .

Additionally, S is unique and called the inverse of T, denoted T−1.

While the above definition is quite complicated, we often think of invertible linear maps in a simpler way.

Definition 8.3 (isomorphism)
A linear map T ∈ L(V,W ) is an isomorphism if it is both injective and surjective.

The next result relates the two definitions.

Theorem 8.4
Suppose T ∈ L(V,W ). Then, T is invertible if and only if it is an isomorphism.

Proof. First, suppose T is invertible. We wish to show that T is an isomorphism. To show that T is injective,
let v ∈ V such that T (v) = 0. Let S be an inverse of T. It follows that

ST (v) = S(⃗0) = 0⃗.

However, we know that ST = idV , so ST (v) = v. Thus, v = 0⃗, so Null(T ) = {⃗0} and T is injective. To show
that T is surjective, let w ∈ W. Since TS = idW , it follows that T (S(w)) = w. Thus, w ∈ Range(T ), which
implies that Range(T ) =W, so T is surjective. Therefore, T is an isomorphism.

Now, suppose T is an isomorphism. We wish to show that T is invertible. To do this, we will construct an
inverse S ∈ L(W,V ). Let w1, . . . , wn be a basis of W. Since T injective and surjective, there exists a unique
vi ∈ V such that T (vi) = wi. Define S(wi) = vi for i = 1, . . . , n. Because w1, . . . , wn is a basis, this uniquely
determines the linear map S. It is clear that

T (S(wi)) = T (vi) = wi,

so TS = idW . To prove that ST = idV , note that

T (ST ) = (TS)T = idWT = T.

This implies that T (ST (v)) = T (v) for any v ∈ V, so ST (v) = v because T is injective. Thus, ST = idV .
Therefore, S is an inverse of T, so T is invertible.

We have shown that invertible linear maps and isomorphisms are equivalent, so we will use the two terms
interchangeably from now on.

In Definition 8.2, we claimed that invertible linear maps have a unique inverse. The proof of this statement is
left as an exercise.

8.4 Isomorphic Vector Spaces
The next definition is closely related to the concepts in the previous section.

Definition 8.5 (isomorphic)
Two vector spaces V and W are called isomorphic if there exists an isomorphism T ∈ L(V,W ).

The notation V ∼= W or V ≃ W are sometimes used to denote isomorphic vector spaces. Additionally, note
that it is possible for V and W to be isomorphic by multiple different isomorphisms. For instance, T ∈ L(R,R)
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defined by T (v) = cv is an isomorphism for any nonzero scalar c. Of course, this example is showing that R is
isomorphic to itself, which is not very noteworthy.

Consider the following examples of isomorphisms and isomorphic vector spaces.

Example 8.6
L(Fm,Fn) and Fm,n are isomorphic. We proved in a previous lecture that the linear map between L(Fm,Fn)
and Fn,m is both injective and surjective, which is precisely the definition of an isomorphism.

Example 8.7
Suppose V is a vector space. Let v1, . . . , vn be a basis of V and let T ∈ L(Fn, V ) defined by

T ((c1, . . . , cn)) =

n∑
i=1

civi.

We can see that T is injective if and only if v1, . . . , vn is linearly independent. Similarly, T is surjective if
and only if v1, . . . , vn span V. Since v1, . . . , vn is a basis, it follows that T is both injective and surjective,
so Fn and V are isomorphic. This example shows that for any vector space V, there exists an isomorphism
from FdimV to V.

The next result gives an easy way to tell if two vector spaces are isomorphic.

Proposition 8.8
Two finite-dimensional vector spaces V and W are isomorphic if and only if dimV = dimW.

Proof. First, suppose V and W are isomorphic. Then, there exists an isomorphism T ∈ L(V,W ). Let v1, . . . , vn
be a basis of V. We will show that T (v1), . . . , T (vn) is a basis of W. Because T is injective, it can be shown that
T (v1), . . . , T (vn) is linearly independent. Similarly, because T is surjective, it can be shown that T (v1), . . . , T (vn)
spans W. Thus, T (v1), . . . , T (vn) is a basis of W, so dimV = n = dimW.

Now, suppose dimV = dimW. Let v1, . . . , vn and w1, . . . , wn be bases of V andW, respectively. Let T ∈ L(V,W )
be defined by T (vi) = wi for i = 1, . . . , n. It can be shown that T is an isomorphism (the details of the proof
are left as an exercise), so V and W are isomorphic.

For instance, we showed that L(Fm,Fn) and Fn,m are isomorphic in Example 8.6. The vector space L(Fm,Fn)
is quite abstract, so we may not be able to figure out the dimension directly. However, we know dimFn,m = mn,
which implies that dimL(Fm,Fn) = mn by Proposition 8.8.

8.5 Product Space
The product of vector spaces introduces the notion of combining smaller vector spaces to create a larger vector
space.
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Definition 8.9 (product of vector spaces)
Suppose V1 and V2 are vector spaces over F.

• The product V1 × V2 is defined by

V1 × V2 = {(v1, v2) | v1 ∈ V1, v2 ∈ V2}.

• Addition on V1 × V2 is defined by

(u1, u2) + (v1, v2) = (u1 + v1, u2 + v2).

• Scalar multiplication on V1 × V2 is defined by

c(v1, v2) = (cv1, cv2).

The next result shows that the product of vector spaces is a vector space.

Proposition 8.10
Suppose V1 and V2 are vector spaces over F. Then, V1 × V2 is a vector space over F.

Proof. The proof is left as an exercise to the reader.

The product of vector spaces can be similarly defined for any finite number of vector spaces V1, . . . , Vm, defined
by

V1 × · · · × Vm = {(v1, . . . , vm) | v1 ∈ V1, . . . , vm ∈ Vm}.

It can be similarly shown that V1 × · · · × Vm is a vector space.

Recall the definition of a direct sum (Definition 3.3). We will show how the product of vector spaces is related to
direct sum. Suppose U1, . . . , Um are subspaces of vector space V. Consider the map T : U1×·×Um → U1+· · ·+Um

defined by
T ((u1, . . . , um)) = u1 + · · ·+ um.

It is easy to show that T is linear. Now, it follows that if U1⊕· · ·⊕Um is a direct sum, then T is an isomorphism.
To prove this, note that by the definition of direct sum, each vector in U1 + · · ·+Um can be expressed uniquely
as a sum u1 + · · ·+ um, which implies that T is injective and surjective.

Thus, U1 × · × Um and U1 ⊕ · · · ⊕ Um are isomorphic. This fact gives intution to the following result, which we
will not prove.

Proposition 8.11
Suppose U1, . . . , Um are subspaces of V. Then, U1 + · · ·+ Um is a direct sum if and only if

dimU1 + · · ·+ dimUm = dim(U1 + · · ·+ Um).

The above result relies on the fact that

dim(U1 × · · · × Um) = dimU1 + · · ·+ dimUm.

To gain some intuition on why this holds, consider Fm×Fn. The linear map that sends ((x1, . . . , xm), (y1, . . . , yn)) ∈
Fm×Fn to (x1, . . . , xm, y1, . . . , yn) ∈ Fm+n is clearly an isomorphism, so Fm×Fn ∼= Fm+n. Thus, dim(Fm×Fn) =
dimFm+n = m+ n = dimFm + dimFn.

8.6 Dual Space
The dual space introduces a new vector space closely related to the original vector space.
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Definition 8.12 (dual space)
Suppose V is a vector space. The dual space of V, denoted V ′, is defined as L(V,F).

A linear map from V to F is called a linear functional on V. Thus, the dual space can also be defined as the set
of all linear functionals on V.

Remark. As a sidenote, consider the geometric meaning of a linear functional. We are projecting a high-
dimensional vector space V onto a one-dimensional vector space and measuring its length. In other words, we
are measuring the "shadow" of V in a certain direction.

Consider the following example of linear functionals.

Example 8.13
Suppose φ : Pm(F) → F. All of the following are linear functionals:

• φ(p) = p(1)

• φ(p) = p′(2) + 2p′′(3)

• φ(p) =
∫ 1

0
p(x) dx.

To better understand the dual space, consider the dual space of Fn as an example. We have

(Fn)′ = L(Fn,F) ∼= F1,n.

Note that Fn and F1,n both have dimension n, but the elements of Fn are typically column vectors while the
elements of F1,n are row vectors.

More concretely, suppose φ : Fn → F is a linear functional. Let e1, . . . , en be the standard basis of Fn. Then, φ
is uniquely determined by the n numbers φ(e1), . . . , φ(en). This gives a bijection from L(Fn,F) to Fn defined
by sending φ ∈ L(F,F) to (φ(e1), . . . , φ(en)) ∈ Fn. Intuitively, this makes sense because we showed earlier that
Fn and L(Fn,F) are both n-element vectors, only differing in being column or row vectors.
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9 Dual Maps and Gaussian Elimination

9.1 Review
Last time, we introduced the notion of dual space. Recall that if V is a vector space over F, the dual space of
V is defined as V ′ = L(V,F).

9.2 Dual Basis
We will continue our discussion of the dual space by introducing the notion of a dual basis. The idea of a dual
basis is prompted by the following question.

Guiding Question
Given a basis v1, . . . , vn of V, how do we construct a basis of V ′?

Note that a basis of V ′ would be made up of linear functionals φi : V → F. We define φi ∈ V ′ by

φi(vj) =

{
1 if j = i

0 if j ̸= i
.

The list of linear functionals φ1, . . . , φn is called the dual basis of V ′.

Lemma 9.1
The dual basis is a basis of V ′.

Proof. First, we will show that the dual basis is linearly independent. Suppose there exists scalars c1, . . . , cn
such that c1φ1 + · · ·+ cnφn = 0. We compute that

(c1φ1 + · · ·+ cnφn)(vj) = c1φ(vj) + · · ·+ cnφ(vj) = cj

for all j = 1, . . . , n. However, we also compute

(c1φ1 + · · ·+ cnφn)(vj) = 0(vj) = 0,

so c1 = · · · = cn = 0. Thus, φ1, . . . , φn is linearly independent.

Now, we will show that the dual basis spans V ′. Suppose φ ∈ V ′ and v1, . . . , vn is a basis of V. Define
ci = φ(vi) for all i = 1, . . . , n. We will show that φ = c1φi + · · · + cnφn. To prove this, we will show that
φ(vj) = (c1φ1 + · · ·+ cnφn)(vj) for all j = 1, . . . , n. We compute

(c1φ1 + · · ·+ cnφn)(vj) = c1φ(vj) + · · ·+ cnφ(vj) = cj ,

which is equal to φ(vj) by definition. Since φ was an arbitrary element in V ′, it follows that φ1, . . . , φn span V ′.

Therefore, the dual basis is a basis of V ′.

Note that the definition of the dual basis follows relatively intuitively from the given basis v1, . . . , vn of V.
Furthermore, an important consequence of Lemma 9.1 is that dimV = dimV ′.

9.3 Dual Map
Now, we will connect the notion of dual spaces with linear maps. The idea of a dual map is prompted by the
following question.

Guiding Question
Suppose T is a linear map from V to W. How would you construct a "dualized" version of T between the
dual spaces V ′ and W ′?

First, recall that an element φ ∈ V ′ is a linear functional from V to F :
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V

W

F

T

φ

We wish to construct a map from W to F, which would be an element of W ′. Given the two maps T and φ, it
is not possible to construct such a map.12

On the other hand, suppose we are given a linear functional φ ∈W ′ :

V W F
T φ

This time, we wish to construct a map from V to F, which would be an element of V ′. This can be done by the
composition φT ∈ V ′. This procedure creates the dual map of T, denoted T ′, where T ′ ∈ L(W ′, V ′) is defined
by T ′(φ) = φT for φ ∈W ′.13

Example 9.2
Suppose T ∈ L(F,F3) defined by T (1) = (6, 5, 4). We wish to find the dual map of T.

Note that T ′ ∈ L((F3)′, (F)′). For brevity, let V = F and W = F3. First, we must find the dual spaces of V
and W Let e and (e1, e2, e3) be the standard bases of V and W, respectively, and let φ and (φ1, φ2, φ3) be
the dual bases of V ′ and W ′, respectively.

Now, we can write the matrix of T ′ with respect to the dual bases. To do this, we must compute
T ′(φ1), T

′(φ2), and T ′(φ3). We calculate

(T ′(φ1))(e) = φ1T (e) = φ1((6e1 + 5e2 + 4e3)) = 6 = 6φ(e),

which implies that T ′(φ1) = 6φ. Similarly, we can calculate T ′(φ2) = 5φ and T ′(φ3) = 4φ. Thus, the matrix
of T ′ is

M(T ′) =
(
6 5 4

)
.

We can also compute

M(T ) =

6
5
4

 ,

so M(T ′) is the transpose of M(T ).

The observation we made M(T ′) = (M(T ))t in the above example is actually a general phenomenon.14
Rigorously, suppose T ∈ L(V,W ) and M(T ) is the matrix of T with respect to bases v1, . . . , vn and w1, . . . , wm

of V and W, respectively. Let M(T ′) be the matrix of T ′ with respect to the dual bases φ1, . . . , φn and
ψ1, . . . , ψm of V ′ and W ′, respectively, Then, it follows that M(T ) and M(T ′) are transposes of each other.
We will not give a rigorous proof, but Example 9.2 gives much of the intuition needed.

Additionally, a symmetric matrix is a square matrix A whose entries are determined by Ai,j = Aj,i. These
conditions imply that At = A. Thus, if T is a linear map such that M(T ) is symmetric, it follows that
M(T ) = M(T ′).

Thus, we now have shown how to "dualize" vector spaces, bases, and linear maps.

9.4 Applications of Gaussian Elimination
At its core, linear algebra is about solving linear equations. In this section, we will discuss Gaussian elimination,
a computational tool to help us achieve this goal.

12Note that if T is an isomorphism, we could construct φT−1 as a linear map from W to F, but this does not work for general T.
13An important observation is that for T ∈ L(V,W ), the dual map T ′ ∈ L(W ′, V ′) has the order of V and W reversed.
14Recall that the transpose of a matrix A, denoted At, is the matrix obtained from A by interchanging the rows and columns.

In other words, if A is a m×n matrix, At is the n×m matrix whose entries are given by (At)i,j = Aj,i.
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Consider the system of equations

x1 + 2x2 + 5x3 = 0

−x1 − 2x2 − 2x3 = 0

x1 + x2 = 0.

This is an example a system of homogeneous linear equations because the right-hand sides are all 0. If any of
the right-hand sides were not 0, these would be inhomogeneous linear equations. For homogeneous equations,
there is always a trivial solution in which all variables are set to 0, so our goal is to find all nontrivial solutions,
if any. For inhomogeneous equations, our goal is to find if any solutions exist at all, and if they do, find all
solutions.

We can also rewrite system of equations in terms of matrices, which we will use to define homogeneous and
inhomogeneous linear equations more concretely. First, we will discuss homogeneous equations.

Definition 9.3 (homogeneous)
A system of m homogeneous linear equations in variables x1, . . . , xn can be written as

Ax = 0⃗

where (x1, . . . , xn) is written as a column vector and A is an m×n matrix.

For instance, the system of equations at the start of this section can be rewritten in matrix form as 1 2 5
−1 −2 −2
1 1 0

x1x2
x3

 =

0
0
0

 ,

which is of the form Ax = 0⃗. The importance of writing this in matrix is form is that A can be viewed as the
matrix form of a linear map T ∈ L(F3,F3). Multiplying the product Ax is equivalent to applying T to the vector
x ∈ F3 Thus, solving Ax = 0⃗ is equivalent to finding all x such that Tx = 0⃗, which occurs when x ∈ Null(T ).
Therefore, finding solutions to a homogeneous system of equations is no more than finding the null space of a
linear map. Gaussian elimination will help us find a basis of Null(T ), which corresponds to the fundamental
solutions of homogeneous linear equations.15

Now, let us consider inhomogeneous linear equations.

Definition 9.4 (inhomogeneous)
A system of m inhomogeneous linear equations in variables x1, . . . , xn can be written as

Ax = 0⃗

where (x1, . . . , xn) is written as a column vector, A is an m×n matrix, and b ∈ Fm is a column vector.

For now, we will only consider whether Ax = b has a solution or not. Since A is the matrix form of a linear
map T, the system of equations Ax = b having a solution is equivalent to b ∈ Range(T ). Once again, Gaussian
elimination will help us determine whether or not a solution exists.

9.5 Reduced Row Echelon Form
Now that we understand the usefulness of Gaussian elimination, will describe how it works. Gaussian elimination
is an algorithm that starts with an m×n matrix A and performs a series of elementary row operations, outputting
a matrix of the same size in reduced row echelon form. In this section, we will define reduced row echelon form
and demonstrate why it is important.

Informally, a matrix is in reduced row echelon form if it looks like:1 ∗ ∗ 0 ∗ 0 ∗ ∗
0 0 0 1 ∗ 0 ∗ ∗
0 0 0 0 0 1 ∗ ∗


15A general solution can be written uniquely as a linear combination of fundamental solutions.
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where the entries marked by ∗ are arbitrary (can be zero or nonzero).

Remark. Note that it is not necessary for a matrix in reduced row echelon form to have a 1 in the first column.
Also, it is possible for it to have rows consisting of only zeroes at the bottom. For instance, the matrix0 1 ∗ 0

0 0 0 1
0 0 0 0


is in reduced row echelon form.

The entries containing leading 1’s are called the pivots; in other words, the pivot in ith row is the first nonzero
entry in the row. Additionally, if a matrix has r pivots, then the pivots must lie in the topmost r rows.
Furthermore, each pivot must lie to the right of the pivot in the row above.

A matrix is in reduced row echelon form is it satisfies:

1. All entries to the left of a pivot are 0.

2. All pivots are 1.

3. All entries above a pivot are 0.

4. All rows below the pivot rows must consist only of zeros.

Formally, suppose E is an m×n matrix with pivots as the (1, j1), . . . , (r, jr) entries. Then, 0 ≤ r ≤ m and
1 ≤ j1 < · · · < jr ≤ n, and the matrix is in reduced row echelon form if it satisfies:

1. For i = 1, . . . , r and j < ji, Ei,j = 0.

2. For i = 1, . . . , r, Ei,ji = 1.

3. For i = 1, . . . , r and k < i, Ek,ji = 0.

4. For i > r and any j, Ei,j = 0.

There is also the notion of row echelon form, which are matrices that look like⊛ ∗ ∗ 0 ∗ 0 ∗ ∗
0 0 0 ⊛ ∗ 0 ∗ ∗
0 0 0 0 0 ⊛ ∗ ∗


where the entries marked by ⊛ are nonzero, and thus the pivots. A matrix is in row echelon form if it satisfies

1. For i = 1, . . . , r and j < ji, Ei,j = 0 (all entries to the left of a pivot are 0).

2. For i = 1, . . . , r, Ei,ji ̸= 0 (all pivots are nonzero).

3. For i > r and any j, Ei,j = 0 (all rows below the pivot rows must consist only of zeros).

Now, we will discuss why matrices in reduced row echelon form are easier to work with. For instance, consider
finding the null space of a linear map T. Suppose the matrix of T, denoted E, is in reduced row echelon form
and has entries

E =

1 2 0 3 0
0 0 1 −1 0
0 0 0 0 1

 .

To find Null(T ), we wish to find solutions to Ex = 0⃗, which is equivalent to

1 2 0 3 0
0 0 1 −1 0
0 0 0 0 1



x1
x2
x3
x4
x5

 = 0⃗.

We can write this as the system of equations

x1 + 2x2 + 3x4 = 0

x3 − x4 = 0

x5 = 0.
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Lecture 9: Dual Maps and Gaussian Elimination

To solve these equations, we can let x2 and x4 take on arbitrary values, which would uniquely determine the
values of x1, x3, and x5. The variables x2, x4 are called free variables because they can be freely assigned to any
value. The other variables x1, x3, x5 are called pivot variables, which correspond to the pivots of the matrix E.
While the above example use homogeneous linear equations, the same analysis applies to inhomogeneous linear
equations as well (which can be used to find Range(T )).

Note that the last equation of the above system of equations has the least number of variables (only x5) while
the first equation has the highest number of variables. In general, the goal of Gaussian elimination is to create
a simplified system of linear equations and first solve the equations with the fewest variables, assigning values
to free and pivot variables along the way, until the system is solved. We will dive into the specifics of Gaussian
elimination in the next lecture.
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Lecture 10: Gaussian Elimination (continued)

10 Gaussian Elimination (continued)

10.1 Review
Last time, we introduced Gaussian elimination, which is an algorithm that starts with an m×n matrix A
converts it into a matrix in reduced row echelon form. Recall that a matrix is in reduced row echelon form if it
looks like: 

0 1 ∗ 0 0 ∗
0 0 0 1 0 ∗
0 0 0 0 1 ∗
0 0 0 0 0 0

 ,

where the leading 1s are called pivots.

10.2 Elementary Row Operations
As mentioned in the previous lecture, Gaussian elimination converts a matrix into reduced row echelon form by
performing elementary row operations.

Definition 10.1 (elementary row operations)
The following are elementary row operations:

1. M(i, c): Multiply the ith row by a nonzero number c ∈ F.

2. A(i c−→ j): Add c times the ith row to the jth row.

3. S(i, j): Swap the ith and jth rows.

Example 10.2
Consider the matrix 0 1 2

1 2 5
2 1 0

 .

The following are examples of elementary row operations on this matrix.

1. Multiplying the second row by 1
2 :0 1 2

1 2 5
2 1 0

 M(2; 12 )−−−−−→

0 1 2
1
2 1 5

2
2 1 0

 .

2. Adding −1 times the third row to the first row:0 1 2
1 2 5
2 1 0

 A(3
−1−−→1)−−−−−−→

−2 0 2
1 2 5
2 1 0

 .

3. Swapping the first and third rows:0 1 2
1 2 5
2 1 0

 S(1,3)−−−−→

2 1 0
1 2 5
0 1 2

 .

Gaussian elimination consists of performing a series of these three elementary row operations until we get our
desired result.

10.3 Performing Gaussian Elimination
Finally, we will show how to actually perform Gaussian elimination. We will present the algorithm in two parts.
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Algorithm 10.3 (Gaussian elimination)
Suppose A is a matrix. First, perform the following steps:

1. Find a leftmost entry in A (may not be unique) and let it be a = Ai,j . Apply M(i; a−1) to make the
pivot equal to 1 and S(i, 1) to make it the first row. Let j1 = j, so (1, j1) is the first pivot.

2. Look down from the first pivot. For each nonzero entry Ai,j1 for i ≥ 2, apply A(1
A−1

i,j1−−−→ i to make
that entry equal to 0. Then, all entries below the first pivot are equal to 0.

3. Delete the first row and repeat the above steps.

The output of the above steps is a matrix in row echelon form with all pivots equal to 1.

Then, perform the following steps:

1. Start with the last pivot (r, jr) and look above it. For each nonzero entry As,jr for s < r, apply

A(r
−A−1

s,jr−−−−→ s to make that entry equal to 0. Then, all entries above the last pivot are equal to 0.

2. Repeat the above step for pivots (r − 1, jr−1), . . . , (1, j1), in order.

The output of the entire algorithm is a matrix in reduced row echelon form.

As an in-depth example, we will perform the first part of Gaussian elimination on the matrix1 2 3
2 1 0
2 2 1

 .

We will take the first row to be our first pivot. Then, we perform the elementary row operations1 2 3
2 1 0
2 2 1

 A(1
−2−−→2)−−−−−−→

1 2 3
0 −3 −6
2 2 1

 A(1
−2−−→3)−−−−−−→

1 2 3
0 −3 −6
0 −2 −5


to make all entries below the pivot equal to 0. Now, we ignore the first row and repeat the steps on the second
and third rows. We take the second row as our pivot and apply1 2 3

0 −3 −6
0 −2 −5

 M(2;− 1
3 )−−−−−−→

1 2 3
0 1 2
0 −2 −5


to make the pivot entry equal to 1. Next, we apply1 2 3

0 1 2
0 −2 −5

 A(2
2−→3)−−−−−→

1 2 3
0 1 2
0 0 −1

 .

To make the entry below the pivot equal to 0. Finally, we apply1 2 3
0 1 2
0 0 −1

 M(3;−1)−−−−−→

1 2 3
0 1 2
0 0 1


to make the last pivot equal to 1, and we are finished with the first part of Gaussian elimination. Note that the
matrix is in row echelon form with all pivots equal to 1.

Now, we will perform the second part of Gaussian elimination, which is much more straightforward. Starting
from the last pivot, we apply1 2 3

0 1 2
0 0 1

 A(3
−2−−→2)−−−−−−→

1 2 3
0 1 0
0 0 1

 A(3
−3−−→1)−−−−−−→

1 2 0
0 1 0
0 0 1



53



Lecture 10: Gaussian Elimination (continued)

to make all entries above the pivot equal to 0. Then, we look at the second pivot and apply1 2 0
0 1 0
0 0 1

 A(2
−2−−→1)−−−−−−→

1 0 0
0 1 0
0 0 1

 .

Now, the matrix is in reduced row echelon form and we have finished Gaussian elimination.16

Now that you understand the logic behind performing Gaussian elimination, consider the next example, which
is how we will show performing Gaussian elimination from now on.

Example 10.4
Perform Gaussian elimination: 0 0 0 2

0 1 2 4
0 3 6 9

 S(1,2)−−−−→

0 1 2 4
0 0 0 2
0 3 6 9


A(1

−3−−→3)−−−−−−→

0 1 2 4
0 0 0 2
0 0 0 −3

 M(2; 12 )−−−−−→

0 1 2 4
0 0 0 1
0 0 0 −3


A(2

3−→3)−−−−−→

0 1 2 4
0 0 0 1
0 0 0 0

 A(2
−4−−→1)−−−−−−→

0 1 2 0
0 0 0 1
0 0 0 0

.
We could have performed Gaussian elimination like this:0 0 0 2

0 1 2 4
0 3 6 9

 M(3; 13 )−−−−−→

0 0 0 2
0 1 2 4
0 1 2 3


S(1,3)−−−−→

0 1 2 3
0 1 2 4
0 0 0 2

 A(1
−1−−→2)−−−−−−→

0 1 2 3
0 0 0 1
0 0 0 2


A(2

−2−−→3−−−−−−→

0 1 2 3
0 0 0 1
0 0 0 0

 A(2
−3−−→1−−−−−−→

0 1 2 0
0 0 0 1
0 0 0 0

.
In Example 10.4, we had a choice to make at the start of Gaussian elimination; we could either take the second
row or the third row as the first pivot. This begs the question: is the output of Gaussian elimination unique?
In other words, is it possible to perform Gaussian elimination on the same matrix in two different ways and get
two different outputs? Clearly, both our methods in Example 10.4 produced the same output. However, we
leave the question on whether or not this is true in general as a thinking point for the reader.

10.4 Null Space and Range Using Reduced Row Echelon Form
After performing Gaussian elimination, we are left with a matrix in reduced row echelon form. In this section,
we will show how to use matrices in reduced row echelon form to compute the null space and range.

Suppose A is an m×n matrix and R is the output of performing Gaussian elimination. Let R be in reduced
row echelon form with pivot entries (1, j1), . . . , (r, jr). As a concrete example, say

R =


0 1 ∗ 0 0 ∗
0 0 0 1 0 ∗
0 0 0 0 1 ∗
0 0 0 0 0 0

 .

We say that free indices are indices 1 ≤ i ≤ n that do not appear in j1, . . . , jr.
17 In other words, free indices

are the indices 1 ≤ i ≤ n such that the ith column does not contain a pivot.
16Note that in the second part of Gaussian elimination, we don’t actually need to write out all the elementary row operations.

Instead, we can just set all entries above the pivots equal to 0, which would give the desired output.
17The notion of free indices is related to free variables, which we mentioned at the end of last lecture.
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Lecture 10: Gaussian Elimination (continued)

Let S ∈ L(Fn,Fm) be a linear map defined by R = M(S). First, let’s find Range(S). Let e1, . . . , en be the
standard basis of Fn. Then, S(eji), . . . , S(ejr ) is a basis of Range(S). This is true because only the first r rows
of R are nonzero, and the remaining rows consist only of zeroes. This implies that

Range(S) = {(x1, . . . , xr, 0, . . . , 0) ∈ Fm | x1, . . . , xr ∈ F} ∼= Fr.

Additionally, let f1, . . . , fm be the standard basis of Fm. By the matrix R, we see that

S(eji) = ith column of R = fi

for all i = 1, . . . , r, which proves that S(eji), . . . , S(ejr ) is a basis of Range(S).

Now, we will consider the original matrix A. The next result is key to why Gaussian elimination works.

Lemma 10.5
Suppose A is an m×n matrix and T ∈ L(Fn,Fm) is a linear map defined by A = M(T ). Let e1, . . . , en be
the standard basis of Fn. Then, T (ej1), . . . , T (ejr ) is a basis of Range(T ).

Proof. First, we will show that each elementary row operation is equivalent to left multiplying by an invertible
matrix. We can see this by the fact that for any matrix A,

• M(i; c) is equivalent to

A
M(i;c)−−−−→



1
. . .

1
c

1
. . .

1


A.

• A(i
c−→ j) is equivalent to

A
A(i

c−→j)−−−−−→



1
. . .

1 c
. . .

1
. . .

1


A.

• S(i, j) is equivalent to

A
S(i,j)−−−−→



1
. . .

0 1
. . .

1 0
. . .

1


A.18

Thus, Gaussian elimination is essentially starting with a matrix A and left multiplying it with a series of
invertible matrices until we get a matrix R in reduced row echelon form. Additionally, note that the product
of invertible matrices is also invertible, so multiplying by a series of invertible matrices can be rewritten as
multiplying by a single, which we will denote as B.

18For more information, visit https://en.wikipedia.org/wiki/Elementary_matrix.
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Lecture 10: Gaussian Elimination (continued)

Now, we have Gaussian elimination starting with a matrix A and outputting R = BA, which implies B is a
m×m matrix. Let S ∈ L(Fm,Fm) be a linear map defined by B = M(S). Then, the product BA is equivalent
to the composition of linear maps ST :

Fn T−→ Fm S−→ Fm.

We can relate Range(T ) and Range(ST ) by applying S,

Range(T )
S−→ Range(ST )

which maps v ∈ Range(T ) to Sv. This map is well-defined because if v ∈ Range(T ), there exists w ∈ Fn

such that v = Tw, so Sv = STw ∈ Range(ST ). Additionally, because B is invertible, it follows that S is an
isomorphism.

Now, sinceR = BA is in reduced row echelon form, we know from our previous discussion that ST (ej1), . . . , ST (ejr )
is a basis of Range(ST ). Because S is an isomorphism, applying S−1 implies that T (ej1), . . . , T (ejr) is a basis
of Range(T ), as desired.

Example 10.6
Suppose A is the starting matrix in Example 10.4

A =

0 0 0 2
0 1 2 4
0 3 6 9


and T is the linear map with matrix A. After performing Gaussian elimination, we get the matrix0 1 2 0

0 0 0 1
0 0 0 0

 .

This matrix has pivots in the second and fourth columns which implies that T (e2), T (e4) is a basis of
Range(T ) by Lemma 10.5, which is equivalent to the second and fourth columns of A. Therefore,

0
1
3

 ,

2
4
9


is a basis of Range(T ).

Now, we will prove a similar lemma with the null space.

Lemma 10.7
Suppose A is an m×n matrix and T ∈ L(Fn,Fm) is a linear map defined by A = M(T ). Let R be the
matrix resulting from performing Gaussian elimination on A and ST ∈ L(Fn,Fm) be the linear map defined
by R = M(ST ). Then, Null(T ) = Null(ST ).

Proof. Recall from the proof of Lemma 10.5 that S is an isomorphism. Thus, for any v ∈ Fn, T v = 0 if and
only if Sv = 0, so Null(T ) = Null(ST ).

Thus, finding Null(T ) is equivalent to finding the null space of matrix R. However, finding the null space of R
is not as simple as finding the range. Recall that free variables are variables xj where j is a free index. As we
discussed at the end of last lecture, the free variables can be assigned to any number, which uniquely determines
the pivot variables xj1 , . . . , xjr . We will use the next example to explain how to find Null(T ) from the pivot
variables.
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Example 10.8
Suppose we perform Gaussian elimination and get the matrix1 2 0 3 0

0 0 1 −1 0
0 0 0 0 1

 .

To get the null space, this should be a homogeneous system of equations, which is equivalent to

x1 + 2x2 + 3x4 = 0

x3 − x4 = 0

x5 = 0.

Note that the free variables are x2, x4. We can express the pivot variables in terms of the free variables:

x1 = −2x2 − 3x4

x3 = x4

x5 = 0.

Thus, we can express the pivot variables only in terms of the free variables, which shows that after we
assign the free variables, the pivot variables are uniquely determined. Additionally, any assignment of the
free variables x2, x4 will correspond with a vector in Null(T ).

To obtain a basis of Null(T ), we plug in the assignments (x2, x4) = (1, 0) and (x2, x4) = (0, 1) and find the
corresponding values of the pivot values. Computing, we find that


−2
1
0
0
0

 ,


−3
0
1
1
0




is a basis of Null(T ).

We generalize the results of the above example with the following: suppose A is an arbitrary m×n matrix and
e1, . . . , en is the standard basis of Fn. Let j1, . . . , jr be the pivot indices of A and let j be a free index of A. For
each free index j, define

vj = ej −
r∑

i=1

Rijeji .

Then, the vectors vj for all free indices j forms a basis of Null(T ).

10.5 Solving Inhomogeneous Equations
Recall that an inhomogeneous system of equations is of the form Ax = b. In this section, we will show how to
use Gaussian elimination to solve equations of this form.

Suppose A is a m×n matrix and b ∈ Fm. First, form the augmented matrix

(A|b),

which is the m×(n+ 1) matrix obtained by appending b to the end of A. Then, perform Gaussian elimination
on A; at each step, apply the row operation to the augmented matrix (A|b) instead of just to A. At the end, we
are left with the augmented matrix

(R|d),

where R is in reduced row echelon form and d ∈ Fm.
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Example 10.9
Suppose A is the starting matrix in Example 10.4

A =

0 0 0 2
0 1 2 4
0 3 6 9


and we wish to solve

Ax =

b1b2
b3

 .

We form the augmented matrix (A|b) :  0 0 0 2 b1
0 1 2 4 b2
0 3 6 9 b3

 .

Then, we perform Gaussian elimination on A, while applying the row operation to the entire augmented
matrix (A|b) :  0 0 0 2 b1

0 1 2 4 b2
0 3 6 9 b3

 S(1,2)−−−−→

 0 1 2 4 b2
0 0 0 2 b1
0 3 6 9 b3


A(1

−3−−→3)−−−−−−→

 0 1 2 4 b2
0 0 0 2 b1
0 0 0 −3 −3b2 + b3

 M(2; 12 )−−−−−→

 0 1 2 4 b2
0 0 0 1 1

2b1
0 0 0 −3 −3b2 + b3


A(2

3−→3)−−−−−→

 0 1 2 4 b2
0 0 0 1 1

2b1
0 0 0 0 3

2b1 − 3b2 + b3

 A(2
−4−−→1)−−−−−−→

 0 1 2 0 −2b1 + b2
0 0 0 1 1

2b1
0 0 0 0 3

2b1 − 3b2 + b3

 .

Now, we will show that solving Ax = b is equivalent to solving Rx = d. As we showed earlier, there exists an
invertible matrix B such that R = BA. Additionally, since we performed the same elementary row operations on
b, it follows that d = Bb. Thus, left multiplying both sides of Ax = b by B gives us Rx = d, and left multiplying
both sides of Rx = d by B−1 gives Ax = b, so the both equations are equivalent.

Thus, it remains to solve Rx = d. From earlier, we know that only the first r rows of R are nonzero, where
r is the number of pivots. Let e1, . . . , em be the standard basis of Fm. Thus, a solution exists if and only
if d ∈ span(e1, . . . , er). If a solution exists, we can find a particular solution, denoted xp, by setting all free
variables equal to 0. Then, we can get the general solution by adding x0 to the particular solution, where x0 is
in the null space of R. This is because

R(xp + x0) = Rxp +Rx0 = d+ 0⃗ = d,

as desired.
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Example 10.10
Continuing on Example 10.9, we wish to solve Rx = d, which is equivalent to

0 1 2 0
0 0 0 1
0 0 0 0



x1
x2
x3
x4

 =

 −2b1 + b2
1
2b1

3
2b1 − 3b2 + b3

 .

Since R has two pivots, it follows that a solution exists if and only if d ∈ span(e1, e2), which occurs when
3
2b1 − 3b2 + b3 = 0. Variables x1, x3 are free, so we can find a particular solution by setting them equal to
0, which gives

xp =


0

−2b1 + b2
0

1
2b1

 .

To find the general solution, we must calculate the null space of matrix A, which is left as an exercise to
the reader.
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11 Eigenvalues, Eigenvectors, and Invariant Subspaces

11.1 Review
Last time, we finished up our discussion of Gaussian elimination.

11.2 Eigenvalues and Eigenvectors
In this lecture, we will begin a new chapter that focuses on the properties of linear operators.

Definition 11.1 (operator)
A linear map from a vector space to itself is called an operator.

The set of all operators on V is denoted by L(V ); in other words, L(V ) = L(V, V ).

When expressing an operator in terms of a matrix, we almost always use the same basis for the domain and the
codomain. Also, note that the matrix of an operator will be a square matrix.

Additionally, there is a special kind of matrices called diagonal matrices, which are square matrices that have
zeroes everywhere except possibly on the diagonal:λ1 0

. . .
0 λn

 .

Note that λ1, . . . , λn ∈ F can either be zero or nonzero. Diagonal matrices are particularly easy to work with.
For instance, multiplying two diagonal matrices consists of simply multiplying the corresponding entries:λ1 0

. . .
0 λn


µ1 0

. . .
0 µn

 =

λ1µ1 0
. . .

0 λnµn

 .

Now, suppose T is a linear operator. What does it mean for M(T ) to be diagonal? Let λ1, . . . , λn be the
diagonal entries of M(T ). It follows that

T (v1) = λ1v1

...
T (vn) = λnvn.

Thus, when we apply T to any basis vector vi, we get a multiple of vi. This leads us to the notion of eigenvalues
and eigenvectors.

Definition 11.2 (eigenvector, eigenvalue)
Suppose T ∈ L(V ).

1. A vector v ∈ V is called an eigenvector of T with eigenvalue λ ∈ F if v ̸= 0 and T (v) = λv.

2. A number λ ∈ F is called an eigenvalue if there is an eigenvector of T with eigenvalue λ. In other
words, λ is an eigenvalue of there exists v ∈ V such that v ̸= 0 and T (v) = λv.

One thing to note is that an eigenvalue can have more than one eigenvector corresponding to it, as seen in the
following example.

Example 11.3
Suppose T = idV . Then, T (v) = v for all v ∈ V. Thus, all vectors v ∈ V such that v ̸= 0 is an eigenvector
of idV with eigenvalue 1.

Do there exist any other eigenvalues of idV ? If λ ∈ F is an eigenvalue, then there exists some nonzero vector
v such that T (v) = λv. However, we know that T (v) = v, which implies that λv = v. This is equivalent to
(1− λ)v = 0⃗, which proves that λ = 1 because v ̸= 0. Therefore, 1 is the only eigenvalue of idV .
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Now, let’s consider the following question.

Guiding Question
When is 0 an eigenvalue of T ∈ L(V )?

If 0 is an eigenvalue, it follows that there exists some vector v ̸= 0 such that T (v) = 0v = 0⃗. Thus, v ∈ Null(T ).
Conversely, if v ∈ Null(T ) and v ̸= 0, then T (v) = 0⃗ = 0v, so v is an eigenvector of T with eigenvalue 0. Therefore,
0 is an eigenvalue of T if and only if Null(T ) contains a nonzero vector (in other words, Null(T ) ̸= {⃗0}).

The next result expands the above reasoning to arbitrary eigenvalues.

Lemma 11.4
Suppose T ∈ L(V ) and λ ∈ F. Then, the following are equivalent:

1. λ is an eigenvalue of T ;

2. T − λidV is not injective;

3. T − λidV is not surjective;

4. T − λidV is not invertible;

5. rank(T − λidV ) < dimV.

Proof. First, we will show that (1) and (2) are equivalent. Suppose λ is an eigenvalue of T. Then, there exists
a nonzero vector v ∈ V such that T (v) = λv. Thus, we compute

(T − λidV )(v) = T (v)− λv = 0⃗,

so v ∈ Null(T − λidV ). It follows that Null(T − λidV ) ̸= {⃗0}, so T − λidV is not injective. Now, suppose
T − λidV is not injective. Then, there exists some nonzero vector such that v ∈ Null(T − λidV ). This implies
that T (v) = λv, so λ is an eigenvalue of T.

For brevity, let S = T − λidV ∈ L(V ). Next, we will show that (2) and (5) are equivalent. Note that S being
not injective is equivalent to dimNull(S) > 0. By Theorem 8.1,

dimNull(S) + rank(S) = dimV.

Thus, dimNull(S) > 0 implies rank(S) < dimV and vice versa.

Next, we will show that (3) and (5) are equivalent. Note that S being not surjective is equivalent to Range(S) ̸= V.
It is clear that Range(S) ̸= V if and only if rank(S) < dimV.

Finally, we will show that (2) and (5) are equivalent. If S is not injective, then S is not invertible. On the other
hand, if S is not invertible, then either S is not injective or S is not surjective. If S is not injective, then we are
done. Otherwise, S is not surjective. However, we have already shown that (2) and (3) are equivalent (because
they are both equivalent to (5)), so S is not surjective if and only if S is not injective. Thus, S is not invertible
implies S is not injective.

Therefore, all statements are equivalent.

11.3 Finding Eigenvalues
Suppose T is a linear operator and M(T ) is diagonal under v1, . . . , vn. We now know that each vi is an eigenvector
of T with λ1, where λ1, . . . , λn are the diagonal entries of M(T ). Thus, it is desirable to find eigenvectors of T,
so that we might be able to find a basis under which M(T ) is diagonal.

To start off simple, let’s first try to find the eigenvalues and eigenvectors of an arbitrary 2×2 matrix. Suppose
T ∈ L(V ) and M(T ) = A under the basis v1, v2, where A is defined as

A =

(
a b
c d

)
.
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Then, λ is an eigenvalue of T if and only if Null(T − λidV ) ̸= {⃗0} by Lemma 11.4, which occurs if and only if
the matrix

M(T − λidV ) = A− λI =

(
a− λ b
c d− λ

)
has nonzero null space. To determine the null space of the above matrix, we find the rank of the matrix by
perform Gaussian elimination.

• If a− λ ̸= 0, (
a− λ b
c d− λ

)
A(1

− c
a−λ−−−−→2)−−−−−−−−−→

(
a− λ b

0 (a−λ)(d−λ)−bc
a−λ

)
.

Note that we did not finish Gaussian elimination because this simplification is enough for our purposes.
Since a − λ ̸= 0 by assumption, rank(A − λI) < 2 if and only if the second row is entirely zeros, which
occurs when (a− λ)(d− λ)− bc = 0.19

• If a− λ = 0 and c ̸= 0, (
0 b
c d− λ

)
S(1,2)−−−−→

(
c d− λ
0 b

)
.

Thus, rank(A− λI) < 2 if and only if b = 0.

• If a− λ = 0 and c = 0, then rank(A− λI) must be less than 2 because it has an entire column of zeros.

In every case, we can determine that rank(A − λI) < 2 if and only if (a − λ)(d − λ) − bc = 0, which can be
rewritten as det(A− λI) = 0 (verify that this works for the second and third cases).

Consider the following example of a 2×2 matrix.

Example 11.5
Suppose V is a vector space over F and T ∈ L(V ) such that M(T ) = A for

A =

(
0 −1
1 0

)
.

We calculate that det(A− λI) = λ2 + 1, so we wish to find solutions to the equation

λ2 + 1 = 0

If F = C, then this equation has solutions λ = ±i, so i and −i are eigenvalues of T. On the other hand, if
F = R, then this equation has no solutions, so T has no eigenvalues.

The above example shows that the eigenvalues of an operator T can depend on the field F that the vector
space is over. Now, the next example will demonstrate how to find eigenvectors corresponding to a particular
eigenvalue.

19You might recognize this expression as the determinant of A− λI. The textbook for this course is notorious for not introducing
determinants until very late in the book. For our course, knowing the formula for the determinant of a 2×2 matrix will be sufficient.
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Example 11.6
Suppose T is defined as in Example 11.5 and F = C. If λ is an eigenvalue of T, then an eigenvector v
corresponding to λ must be in the null space of the matrix

A− λI =

(
−λ −1
1 −λ

)
.

This is equivalent to solving the homogeneous equation(
−λ −1
1 −λ

)(
x1
x2

)
=

(
0
0

)
.

We know that T has eigenvalues i and −i. First, let’s consider λ = i. The equation(
−i −1
1 −i

)(
x1
x2

)
=

(
0
0

)
must have at least one solution, since we proved in Example 11.5 that the rank of this matrix is less than 2.
In particular, we can find that (x1, x2) = (1,−i) is a solution, and thus an eigenvector of T with eigenvalue
i. Similarly, we can find that (x1, x2) = (1, i) is an eigenvector of T with eigenvalue −i.

Denote the eigenvectors as

v1 =

(
1
−i

)
, v2 =

(
1
i

)
.

Is it easy to see that v1, v2 is a basis of C2. Thus, based off our earlier discussion, M(T ) with respect to
basis v1, v2 should be the diagonal matrix

M(T, (v1, v2)) =

(
i 0
0 −i

)
,

where the diagonal entries are the corresponding eigenvalues.

At this point in our discussion, we arrive at the following two questions.

Guiding Question
Suppose T ∈ L(V ).

• How many eigenvalues does T have?

• Does there exist a basis of V consisting of eigenvectors of T?

For the first question, note that we have seen many examples of linear operators with different numbers of
eigenvalues. For instance, the operator in Example 11.5 under C has dimV eigenvalues, while the same operator
under R has 0 eigenvalues. Furthermore, we saw in Example 11.3 that idV has 1 eigenvalue. In general, T can
have as few as 0 eigenvalues and as many as dimV eigenvalues (which we will prove later).

For the second question, note that M(T ) with respect to a basis of eigenvectors will be a diagonal matrix.
In Example 11.6, we saw that there exists a basis of eigenvectors for that particular T. However, it does not
necessarily exist for all operators T, as seen in the next example.

63



Lecture 11: Eigenvalues, Eigenvectors, and Invariant Subspaces

Example 11.7
Suppose T ∈ L(V ) such that M(T ) = A where

A =

(
0 1
0 0

)
.

The determinant of A− λI is λ2, so the only eigenvalue of T is 0.

Thus, if V had a basis v1, v2 of eigenvectors, it follows that both v1, v2 are eigenvectors with eigenvalue 0.
However, Tv1 = Tv2 = 0⃗ implies that T = 0, which is a contradiction. Therefore, there does not exist a
basis of eigenvectors of T.

Now, we will prove the following result, which will limit the number of eigenvalues an operator can have.

Lemma 11.8
Suppose T ∈ L(V ) and v1, . . . , vr are eigenvectors of T with distinct eigenvalues λ1, . . . , λr. Then, v1, . . . , vr
are linearly independent.

Proof. Let a1, . . . , ar be scalars such that

a1v1 + · · ·+ arvr = 0⃗.

If we apply T to both sides, the right-hand side becomes T (⃗0) = 0⃗. The left-hand side becomes

T (a1v1 + · · ·+ arvr) = a1T (v1) + · · ·+ arT (vr) = a1λ1v1 + · · ·+ arλrvr.

Thus, we get the equation a1λ1v1 + · · ·+ arλrvr = 0⃗. However, we can apply T to both sides of this equation
to get a1λ21v1 + · · ·+ arλ

2
rvr = 0⃗. In general, we can apply T j times to get the equation

a1λ
j
1v1 + · · ·+ arλ

j
rvr = 0⃗.

Thus, we have an infinite number of linear independence relations. For the sake of contradiction, assume there
exists a relation where a1, . . . , ar are not all zero and suppose a1v1 + · · ·+ arvr = 0⃗ is the relation with the least
number of nonzero ai’s. We can apply T to both sides to get the relation a1λ1v1 + · · ·+ arλrvr = 0⃗. Without
loss of generality, suppose a1 = 0. We multiply our original relation by λ1 to get

a1λ1v1 + · · ·+ arλlvr = 0⃗.

We subtract our second relation to get

a1(λ1 − λ1)v1 + · · ·+ ar(λ1 − λr)vr = 0⃗.

Now, we will show that the coefficients of this relation a1(λ1−λ1), · · · , ar(λ1−λr) has fewer nonzero coefficients
than a1, . . . , ar. First, note that ai(λ1 − λi) = 0 if and only if ai = 0 for i = 2, . . . , r. However, a1(λ1 − λ1) = 0
while ai ̸= 0, so this new relation has one less nonzero coefficient. This is a contradiction, unless a2(λ1 − λ2) =
· · · = ar(λ1 − λr) = 0. This implies that a2 = · · · = ar = 0. Plugging this back into a1v1 + · · · + arvr = 0⃗, it
follows that a1 = 0, which is a contradiction. Therefore, v1, . . . , vr are linearly independent.

A consequence of this lemma is that an operator T ∈ L(V ) can have at most dimV distinct eigenvalues. To
prove this, let λ1, . . . , λr be all eigenvalues of T. For each eigenvalue λi, there exists at least one eigenvector vi
corresponding to λi. By Lemma 11.8, v1, . . . , vr is linearly independent. A list of linearly independent vectors
has length at most dimV, so r ≤ dimV.

11.4 Invariant Subspaces
We have seen how applying an operator T to an eigenvector sends it to a multiple of itself. What if we instead
considered a subspace, which when applying an operator T, the subspace gets sent to itself? This motivates the
notion of invariant subspaces.
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Definition 11.9 (invariant subspace)
Suppose T ∈ L(V ). A subspace U of V is called T -invariant if T (u) ∈ U for all u ∈ U.

A simple example of invariant subspaces is as follows: let v ∈ V and let F · v denote the subspace of V consisting
of multiples of v. Then, F · v is T -invariant if and only if v is an eigenvector of T.

Now, suppose T ∈ L(V ) and U is a T -invariant subspace of V. Choose a basis u1, . . . , um of U and extend it to
a basis u1, . . . , um, um+1, . . . , un of V. Note that when we express

T (u1) = a1u1 + · · ·+ amum + am+1um+1 + · · ·+ anun,

the coefficients am+1, . . . , an will all be equal to 0 because T (u1) ∈ U by the definition of invariant subspaces.
This reasoning holds for T (u1), . . . , T (um). Thus, M(T ) with respect to this basis would look like

M(T ) =



∗ · · · ∗ ∗ · · · ∗
...

...
...

...
∗ · · · ∗ ∗ · · · ∗
0 · · · 0 ∗ · · · ∗
...

...
...

...
0 · · · 0 ∗ · · · ∗


This is called a block upper-triangular matrix, because the blocks of the matrix look upper-triangular. The
upper-left block is the matrix of the restriction operator T |U ∈ L(U). Additionally, the lower-right block is the
matrix of another linear operator related to T which has to do with the quotient space. Both of these will be
explored further in the next lecture.
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12 Invariant Subspaces (continued) and Upper-triangular Matrices

12.1 Review
Last time, we introduced the notion of eigenvectors and eigenvalues and we ended with a definition of invariant
subspaces. Recall that if T is a linear operator acting on some vector space V, then subspace U ⊂ V is T -invariant
if T (u) ∈ U for all u ∈ U (Definition 11.9).

Furthermore, we showed that if we have a basis u1, . . . , um of U and we extend it to a basis u1, . . . , um, w1, . . . , wk

of V, then the matrix of T under this extended basis looks like the block upper-triangular matrix

M(T ) =

 ∗ ∗

0 ∗

 . (3)

Recall that dimU = m and dimV = m+k, which follows from how we defined the bases of U and V. Furthermore,
we showed at the end of last lecture that the upper-left and bottom-right blocks are both square matrices with
dimensions m×m and k×k, respectively.

Guiding Question
Do the upper-left and bottom-right blocks represent some operator? If so, what are these operators relation
to T?

12.2 Restriction Operator
First, we will consider the upper-left block of M(T ).

Definition 12.1 (restriction operator)
Suppose T ∈ L(V ) and U is a T -invariant subspace of V. Then, the restriction operator T |U ∈ L(U) is
defined by

T |U (u) = T (u)

for all u ∈ U.

Essentially, T |U is identical to T except the domain and codomain of T |U is restricted to the subspace U instead
of all of V.

Thus, the upper-left block is exactly the matrix of M(T |U ) under the basis u1, . . . , um. So, in terms of matrices,
restricting your operator to a T -invariant subspace U ⊂ V is equivalent to concentrating on the upper-left corner
of M(T ). We can now express M(T ) as the block matrix

M(T ) =

 M(T |U ) ∗

0 ∗

 . (4)

12.3 Quotient Space
Now, consider the lower-right block of M(T ). Note that the lower-right block is a k×k square matrix, where
k = dimV − dimU. So, we first have to define a vector space with dimension equal to dimV − dimU.

Definition 12.2 (quotient space)
The quotient space V/U a is the set of equivalence classes in V where two vectors v1 and v2 are equivalent
if and only if v1 − v2 ∈ U.

aV/U is also sometimes denoted as V modU.
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This is analogous to decomposing the integers into odd and even integers: two integers are equivalent if and
only if their difference is an even number. But, in the abstract case, instead of integers we are talking about
vectors, which are equivalent if and only if their different lies in some smaller subspace.

Thus, if two vectors in V are equivalent according the above definition, we view them as the same element in
V/U. Elements in V/U are denoted as v + U, where v + U represents the subset of V containing the vectors
v + u for all u ∈ U. Essentially, v +U can be thought of as collections of equivalent vectors, where v is simply a
representative of the equivalence class.

Example 12.3
Consider a geometric example, where V is the 2D-plane and U is a line.

V

0

U
v

v + U

v′

v′ + U

We can start at v and add anything in U, which forms a parallel line. Namely, this parallel line is v + U. If
we pick a different v′, we get a different parallel line representing v′ + U. Thus, V/U is the set of lines in V
parallel to U.

Now, we can define addition and scalar multiplication on V/U.

Definition 12.4 (addition and scalar multiplication on V/U)
Addition and scalar multiplication on V/U is defined by

• addition : (v1 + U) + (v2 + U) = (v1 + v2) + U

• scalar multiplication : c(v + U) = (cv) + U

However, an issue with this definition is that the representation of any v + U is not unique: if v − v′ ∈ U, then
v + U = v′ + U. So, we must show that the definitions above are well-defined.

To show that addition is well-defined, we must show that if v1 + U = v′1 + U and v2 + U = v′2 + U, then
(v1 + v2) + U = (v′1 + v′2) + U. Since v1 + U = v′1 + U and v2 + U = v′2 + U, it follows that v′1 − v1 ∈ U and
v′2 − v2 ∈ U. But, U is closed under addition because U is a subspace, so it follows that (v′1 − v1) + (v′2 − v2) =
(v′1 + v′2)− (v1 + v2) ∈ U, which implies that (v1 + v2) + U = (v′1 + v′2) + U.

Similarly, to show that scalar multiplication are well-defined, we must show that if v + U = v′ + U, then
(cv) + U = (cv′) + U. Since v′ − v ∈ U and U is closed under scalar multiplication (recall U is a subspace), it
follows that c(v′ − v) = cv′ − cv ∈ U, so (cv) + U = (cv′) + U.

Now that addition and scalar multiplication on V/U are well-defined, we can show that V/U is a vector space.
It is easy to verify that V/U under these operations satisfies the necessary axioms for a vector space.20

Now, we will focus our attention on the dimension of V/U.

Theorem 12.5 (Dimension of a quotient space)
Suppose V is a vector space and U is a subspace of V. Then

dimV/U = dimV − dimU.

Proof. Construct a basis u1, . . . , um of U and extend it to a basis u1, . . . , um, w1, . . . , wk of V. We will show that
20Note that the additive identity in V/U is 0 + U and the additive inverse is (−v) + U.
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w1 + U,w2 + U, . . . , wk + U is a basis of V/U.

First, we will show that w1 + U,w2 + U, . . . , wk + U span V/U. Take any v + U ∈ V/U. We can express
v =

∑n
i=1 aiui +

∑k
j=1 bjwj . Then, v − (b1w1 + · · · + bkwk) = a1u1 + · · · amum ∈ U, since u1, . . . , um form a

basis of U. Thus,
v + U = b1(w1 + U) + b2(w2 + U) + · · ·+ bk(wk + U),

so w1 + U,w2 + U, . . . , wk + U span V/U.

Next, we will check linear independence. Suppose we have the linear dependence relation
∑k

j=1 bj(wj + U) =

0⃗V/U , where 0⃗V/U represents the zero vector in V/U. This implies that
∑k

j=1 bjwj− 0⃗V ∈ U, where 0⃗V represents
the zero vector in V, so

∑k
j=1 bjwj ∈ U. Thus, there exist constants ai such that

∑k
j=1 bjwj =

∑m
i=1 aiui.

However, since u1, . . . , um, w1, . . . , wk is a basis, it follows that ai = bj = 0 for all i, j.

Therefore, w1 + U,w2 + U, . . . , wk + U is a basis of V/U, so dimV/U = k. We know that dimV − dimU =
(m+ k)−m = k, so dimV/U = dimV − dimU.

Example 12.6

• V/{0} = V

• V/V = {0}

Remark. Do not confuse V/U with the complement of U in V (denoted V \ U). For instance, V/{0} is the
entire vector space V, while V \ {0} is V with the zero vector removed.

Now, we will examine a linear map from V to V/U.

Definition 12.7 (quotient map)
Suppose U is a subspace of V. Then, the quotient map π : V → V/U is the linear map defined by

π(v) = v + U

for all v ∈ V.

Guiding Question
What are Null(π) and Range(π)?

Answer. For Nullπ, is it clear that π(v) = 0 + U if and only if v ∈ U, so Nullπ = U.

For Rangeπ, any element in V/U can be expressed as v + U for some v ∈ V, so π is surjective. Thus,
Rangeπ = V/U.

Remark. The quotient map π also gives us an simpler way to prove Theorem 12.5. By the Fundamental
Theorem of Linear Maps,

dimV = dimNullπ + dimRangeπ = dimU + dimV/U,

so dimV/U = dimV − dimU.21

Now, consider the composition of linear maps

U
id−→ V

π−→ V/U.

Guiding Question
What is the linear map from U → V/U given by the composition of id and π?

21This proof was not covered in lecture, although it is given in Axler.
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Answer. For u ∈ U, we know that id(u) = u ∈ U ⊂ V. Since Null(π), it follows that π(id(u)) = 0. So, the
composition of the two maps is the zero map.

This structure helps illuminate the relation of U and V/U to V. While U is a part of V, the elements of V/U
can be described as "shadows" of elements of V. For instance, consider the following diagram:

U
V V/U

light

shadow

Imagine you have some directional light source, which shines on some arbitrary object. Then, the light points
in some direction and collapses every point in that direction to a single point in the shadow. This example is
analogous to quotient spaces, where V is analogous to the arbitrary object, U is analogous to the direction of
the light, and V/U is analogous to the shadow of the object.

12.4 Quotient Operator
Finally, we are ready to return to our Guiding Question at the start of the lecture: what operator does the
bottom-right block of M(T ) represent?

Definition 12.8 (quotient operator)
Suppose T ∈ L(V ) and U is a T -invariant subspace of V. Then, the quotient operator T/U ∈ L(V/U) is
defined by

(T/U)(v + U) = Tv + U

for all v ∈ V.

First, we must show that the quotient operator is well-defined: that is, we need to verify that if v+U = v′ +U,
then Tv + U = Tv′ + U. This is equivalent to showing that Tv′ − Tv = T (v′ − v) ∈ U, which is true because
v′ − v ∈ U and U is a T -invariant subspace. So, the quotient operator is well-defined.

Now, recall that u1, . . . , um is a basis of U and u1, . . . , um, w1, . . . , wk is a basis of V. In our proof of Theorem
12.5, we showed that w1 + U, . . . , wk + U is a basis of V/U.

Consider M(T/U) with respect to the basis w1 + U, . . . , wk + U. This is exactly the lower-right block of
M(T ).Thus, we now have the completed picture of M(T ), which is

M(T ) =

 M(T |U ) ∗

0 M(T/U)

 . (5)

12.5 Upper-Triangular Matrices
We will now shift our discussion to the topic of upper-triangular matrices.

Definition 12.9 (Upper-triangular matrix)
A matrix is called upper-triangular if all entries below the diagonal are 0.

Note that that the notion of upper-triangular matrices only applies to square matrices.
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Example 12.10
The 5×5 matrix 

∗ ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
0 0 ∗ ∗ ∗
0 0 0 ∗ ∗
0 0 0 0 ∗


is an upper-triangular matrix. The 0’s below the diagonal are often shorthanded by a single big 0, so the
matrix above is often written as 

∗ ∗ ∗ ∗ ∗
∗ ∗ ∗ ∗

∗ ∗ ∗

0 ∗ ∗
∗

 .

Now, we will discuss the usefulness of upper-triangular matrices in finding eigenvalues.

Proposition 12.11
Suppose T ∈ L(V ) and M(T ) is upper-triangular under some basis of V. Then, the eigenvalues of T are
the diagonal entries of M(T ).

Example 12.12

Consider the matrix A =

(
1 1
0 2

)
. Then,

A

(
1
0

)
= 1

(
1
0

)
and A

(
1
1

)
= 2

(
1
1

)
,

so the eigenvalues of A are λ = 1, 2.

So, if a basis of T exists such that M(T ) with respect to that basis is upper-triangular, then the eigenvalues of
T can be easily identified.

Let Eigen(T ) represent the set of eigenvalues of T. To prove Proposition 12.11, we will first need the following
lemma.

Lemma 12.13
Suppose T ∈ L(V ) and U is a T -invariant subspace of V. Then,

Eigen(T ) = Eigen(T |U ) ∪ Eigen(T/U).

Example 12.14
Consider the same matrix A as in Example 12.12. Then, M(T |U ) =

(
1
)

and M(T/U) =
(
2
)
, which have

eigenvalues λ = 1 and λ = 2, respectively.

Proof of Lemma 12.13. Let λ ∈ F. Recall that λ ∈ Eigen(T ) if and only if T − λidV
22 is not invertible. Fur-

thermore, λ ∈ Eigen(T |U ) ∪ Eigen(T/U) if and only if either T |U − λidV is not invertible or T/U − λidV is not
invertible. Now, let S = T − λidV ∈ L(V ). It is easy to verify that U is S-invariant.Thus, S|U = T |U − λidV
and S/U = T/U − λidV .

It remains to show that S is not invertible if and only if either S|U −λidV or S/U −λidV is not invertible. This
is equivalent to showing that S is invertible if and only if both S|U and S/U are invertible.

22Recall that idV is the identity operator in V.
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First, suppose that S is invertible. Then, there exists some R ∈ L(V ) such that SR = RS = idV . Since S is
invertible and U is S-invariant, for any v ∈ U, there exists some v′ ∈ U such that Sv′ = v. Then,

Rv = R(Sv′) = idV (v
′) = v′,

so U is R-invariant. Now, we will show that R|U is the inverse of S|U and R/U is the inverse of S/U. For any
v ∈ U,

S|UR|Uv = SRv = v,

so R|U is the inverse of S|U . Furthermore, for any v ∈ V,

(S/U)(R/U)(v + U) = (S/U)(Rv + U) = SRv + U = v + U,

so R/U is the inverse of S/U. Therefore, both S|U and S/U are invertible.

Now, suppose that both S|U and S/U are invertible. Let u1, . . . , um be a basis of U and extend it to a basis
u1, . . . , um, w1, . . . , wk of V. We will show that S(u1), . . . , S(um), S(w1), . . . , S(wk) is linearly independent.

Suppose
∑m

i=1 aiS(ui)+
∑k

j=1 bjS(wj) = 0.We know that
∑m

i=1 aiS(ui) ∈ U, so
∑k

j=1 bjS(wj) = −
∑m

i=1 aiS(ui) ∈
U. This implies that

k∑
j=1

bj(S/U)(wj + U) = 0 + U.

Since (S/U) is invertible, it maps a basis of V/U to another basis. Thus, (S/U)(w1 +U), . . . , (S/U)(wk +U) is
a basis of V/U, so bj = 0 for all j. We now have

m∑
i=1

aiS(ui) = 0.

Similarly, since ui, . . . , um is a basis of U and S|U is invertible, it follows that S(u1), . . . , S(um) is a basis of U.
Therefore, ai = 0 for all i, so S(u1), . . . , S(um), S(w1), . . . , S(wk) is linearly independent.

Now, since S(u1), . . . , S(um), S(w1), . . . , S(wk) is linearly independent and dimV = m+ k, it must be a basis
of V. Therefore, S maps a basis of V to another basis of V, so S is an isomorphism and thus is invertible.

Finally, we are ready to prove Proposition 12.11.

Proof of Proposition 12.11. Consider the decomposition of M(T ) into the blocks

M(T ) =


λ1 ∗ · · · ∗
0 λ2 ∗
...

. . .
0 0 λn

 .

It is clear that Tv1 = λ1v1, so λ1 ∈ Eigen(T ). Let U = span(v1), which is clearly a T -invariant subspace. Denote
the lower-right block of M(T ) as M(T )′. By Equation 5,

T |U =
(
λ1
)

and T/U = M(T )′.

Then, by Lemma 12.13,

Eigen(T ) = Eigen(T |U ) ∪ Eigen(T/U)

= {λ1} ∪ Eigen(M(T )′).

Since M(T )′ is also upper-triangular, we can continue in this fashion to show that λ2, λ3, . . . , λn are eigenvalues
of T. Therefore, the eigenvalues of T are the diagonal entries of M(T ).
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13 Existence of Eigenvalues and Diagonal Matrices

13.1 Review
Last time, we ended with the statement that if A is an upper-triangular matrix, then the eigenvalues of A are
the diagonal entries. However, we have not yet discussed the case where a linear operator T is not guaranteed
to have an eigenvalue. The following theorem will show when we are guaranteed to have an eigenvalue.

13.2 Existence of Eigenvalues (Complex Vector Spaces)

Theorem 13.1 (Operators on complex vector spaces have an eigenvalue)
Suppose V is a finite-dimensional vector space over C and T is a linear operator in L(V ). Then, T has an
eigenvalue.

Note that this theorem doesn’t tell you how to find an eigenvalue, but only asserts that there one exists.

Before we begin the proof, we must first discuss some properties of polynomials. Let p(z) be a polynomial
in P(C). We know how to evaluate a polynomial at some number a, which results in some complex number
p(a) ∈ C. But, we can also evaluate polynomials on matrices. For instance, if A is a square matrix, then p(A)
is also a square matrix.

Similarly, for any T ∈ L(V ), we can evaluate p(T ), which will also be in L(V ).

Example 13.2
Let p(z) = 1

2z
2 + 1. Then,

p(A) =
1

2
A2 + I,

p(T ) =
1

2
T 2 + idV .

Now, we will break up the proof of Theorem 13.1 into multiple steps:

1. There exists a nonzero polynomial p(z) ∈ P(C) such that p(T ) = 0.

2. If there exists a nonzero polynomial p(z) ∈ P(C) such that p(T ) = 0, then T has an eigenvalue.

Proof of (1). Before proving the general statement, we will look at a few special cases.

Example 13.3
Consider the special case where dimV = 1. It follows that every operator in L(V ) is scalar multiplication
by some number λ ∈ C. Thus, in this case, T is equivalent to some number λ.

Thus, our problem has reduced to the trivial problem finding a polynomial p(z) such that p(λ) = 0. One
such polynomial is p(z) = z − λ.
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Example 13.4
Consider the case where dimV = 2. Then, we can convert T into its matrix form

M(T ) =

(
a b
c d

)
.

Let p(z) = a0 + a1z + · · ·+ anz
n. We wish to find a0, a1, . . . , an such that

a0

(
1 0
0 1

)
+ a1

(
a b
c d

)
+ · · ·+ an

(
a b
c d

)n

=

(
0 0
0 0

)
.

Now, consider the polynomial p(z) = z2 − (a+ d)z + (ad− bc) a. The simple calculation to show that p(z)
is a solution to the 2-dimensional case is left to the reader.

aThe motivation to behind this solution will be covered near the end of the course.

Now, we will prove the general case. Consider the following list of an infinite number of operators

idV , T, T
2, T 3, . . . ∈ L(V ).

Since V is a finite-dimensional vector space, let dimV = n. It follows that dimL(V ) = n2, so L(V ) is finite-
dimensional. Thus, for N > n2, it must be that the list of operators idV , T, T

2, . . . , TN is linearly dependent.
This implies that there exists a linear combination

a0idV + a1T + a2T
2 + · · ·+ aNT

N = 0

for some a0, a1, . . . , aN ∈ C which are not all zero.

Let p(z) = a0 + a1z + · · ·+ anz
N . It is clear that p(z) is nonzero and p(T ) = 0.

Remark. Note that tells you a very ineffective way of finding p(z), since it requires you to calculate T, T 2, . . . , TN

and somehow find scalars a0, a1, . . . , aN . This proof is mainly only useful for proving the existence of p(z), not
for finding p(z).

Before we begin the proof of (2), recall the Fundamental Theorem of Algebra states that every non-constant
polynomial p(z) ∈ P(C) has a root in C. Let pn(z) be a polynomial of degree n. Then, it follows that pn(z) has
some root λ1, so

pn(z) = (z − λ1)pn−1(z).

It is clear that this procedure can be repeated on pn−1(z), pn−2(z), . . . , p1(z) to get

pn(z) = c(z − λ1)(z − λ2) · · · (z − λn),

where c ∈ C. Thus, another way of stating the Fundamental Theorem of Algebra is that any complex polynomial
p(z) can be factored into linear factors (this factorization is also unique).

Proof of (2). Consider some nonzero p(z) ∈ P(C) such that p(T ) = 0. It is clear that p(z) is a non-constant
polynomial because p(z) is nonzero and p(T ) = 0. Now, we can apply the Fundamental Theorem of Algebra to
conclude that

p(z) = c(z − λ1)(z − λ2) · · · (z − λn)

for some nonzero c ∈ C. Then,

p(T ) = c(T − λiidV )(T − λ2idV ) · · · (T − λN idV ) = 0.

Since c ̸= 0, it follows that (T − λiidV )(T − λ2idV ) · · · (T − λN idV ) = 0. Denote Si = T − λiidV ∈ L(V ) for
i = 1, 2, . . . , N. It follows that

S1S2 · · ·SN = 0.

If all S1, S2, . . . , SN were invertible, then their product S1S2 · · ·SN = 0 would also be invertible, which is a
contradiction. Thus, say Si is not invertible. It follows that Si = T − λiidV is not invertible, so λi is an
eigenvalue of T.

Remark. If you can find some p(z) such that p(T ) = 0, then an eigenvalue of T must be one of the roots of
p(z).
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Corollary 13.5
Suppose T ∈ L(V ) where V is a vector space over C. Then, there exists a basis of V such that M(T ) is
upper triangular.

Proof. We will prove this by induction on the dimension of V.

First, consider the base case dimV = 1. Then, as shown in Example 13.3, T is equivalent to scalar multiplication
by some λ ∈ C. It follows that the matrix form of T is the 1×1 matrix M(T ) =

(
λ
)
, which is upper-triangular.

Now, let dimV = n > 1. Assume that the statement has been proved for all dimV < n. By Theorem 13.1, T
has an eigenvalue λ1. This implies that T has an eigenvector v1 such that Tv1 = λv1. Let U = span(v1) ⊂ V.
Since v1 is an eigenvector, it follows that U is a T -invariant subspace. Thus, T |U and T/U are well-defined. It
is clear that the matrix form of T |U is the 1×1 matrix

(
λ1
)
.

We know that T/U ∈ L(V/U) and dimV/U = dimV − 1 = n− 1 < n. By the inductive hypothesis, there exists
a basis w1, w2, . . . , wn−1 of V/U such that M(T/U) is upper-triangular. Then, recall that V is related to V/U
by the quotient map π (see Definition 12.7). Since π is surjective, for each wi ∈ V/U, there exists some yi ∈ V
such that π(yi) = wi for all i = 1, . . . , n− 1.

Now, we claim v1, y1, y2, . . . , yn−1 is a basis of V. Since the number of vectors is equivalent to dimV, it remains
to show that v1, y1, y2, . . . , yn−1 is linearly independent. Let c1, c2, . . . , cn be scalars such that

c1v1 + c2y1 + · · ·+ cnyn−1 = 0.

Since v1 ∈ U, it follows that π(v1) = 0. Then, applying π to both sides gives

π(c1v1 + c2y1 + · · ·+ cnyn−1) = c2w1 + · · ·+ cnwn−1 = 0.

Since w1, . . . , wn−1 is a basis, it follows that c2 = · · · = cn = 0. It remains that c1v1 = 0, so c1 = 0. Thus,
v1, y1, y2, . . . , yn−1 is linearly independent.

Now, consider the matrix of T under the basis v1, y1, y2, . . . , yn−1. It is clear that

M(T ) =


λ1 ∗ · · · ∗
0
... M(T/U, (w1, . . . , wn−1))
0

 ,

Note that wi = yi + U for all i = 1, . . . , n − 1, which is why the lower-right block of M(T ) is equivalent to
M(T/U). By the inductive hypothesis M(V/U) is upper-triangular, so M(T ) is upper-triangular, as desired.

Last lecture, we proved Proposition 12.11. Now, we will prove some sort of converse.

Corollary 13.6
Suppose A is an n×n matrix with entries in C. Then, there exists an invertible n×n matrix S such that
SAS−1 is upper-triangular.

Note that matrix SAS−1 represents the same operator as matrix A, but under a different basis determined by
S.23 24

13.3 Existence of Eigenvalues (Real Vector Spaces)
We will continue our discussion of eigenvalues, this time over R.

23The operation SAS−1 is called conjugation by S on matrix A.
24In particular, if A is the matrix of T under the basis v1, . . . , vn, then SAS−1 is the matrix of T under the basis w1, . . . , wn

where vi =
∑n

j=1 Sj,iwj for i = 1, 2, . . . , n.
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Example 13.7
Consider the 2×2 matrix with real entries

A =

(
0 −1
1 0

)
.

Suppose T ∈ L(R2) is the linear operator corresponding to matrix A.

Solving for the eigenvalues of A, we get the equation

(λ− 0)(λ− 0)− 1(−1) = λ2 + 1 = 0.

This clearly does not have any real roots, so T has no real eigenvalues.a

aNote that if T ∈ L(C2), then T would have eigenvalues i and −i.

13.4 Eigenspaces
Now, suppose we have a matrix A with change of basis matrix S such that

SAS−1 =

2 ∗ ∗
0 3 ∗
0 0 3

 .

By Theorem 12.11, λ = 2, 3 are the eigenvalues of SAS−1. However, both A and SAS−1 are matrix representa-
tions of the same operator T, so λ = 2, 3 are also the eigenvalues of A.

This implies that any upper-triangular matrix representation of T must have 2 and 3 on the diagonal.

Guiding Question
Consider the same matrix A as above. It is possible to have a change of basis matrix S1 such that

S1AS
−1
1 =

2 ∗ ∗
0 2 ∗
0 0 3

?

In general, is it possible for SAS−1 and S1AS
−1
1 to have the same set of eigenvalues along the diagonal,

but they appear different number of times?

Answer. No! We will learn later in the course that number of times each eigenvalue appears on the diagonal
is related to the linear operator T, and thus is invariant under conjugation by S and S1.

Today, we will discuss a special case of the question above, which is when A is diagonal.

Guiding Question
Does there exist some matrix S such that

S

2 0 0
0 3 0
0 0 3

S−1 =

2 0 0
0 2 0
0 0 3

?

To answer this question, we will first need the following definition.

Definition 13.8 (eigenspace)
Suppose T ∈ L(V ) and λ ∈ F. Then, the eigenspace of T corresponding to eigenvalue λ is defined by

E(λ, T ) = {v ∈ V |T (v) = λv}.

In other words, E(λ, T ) is the set of all eigenvalues of T corresponding to eigenvalue λ and the 0 vector.
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Note that the 0 vector is included in the eigenspace, so E(λ, T ) is a subspace. This can be shown by seeing that
the condition T (v) = λv implies that (T − λidV )(v) = 0, so

E(λ, T ) = Null(T − λidV ).

Since the null space of any linear map is a subspace, it follows that E(λ, T ) is a subspace of V.

Now, we will use eigenspaces to answer the Guiding Question. We will reformulate the Guiding Question in
terms of linear operators instead of matrices.

Guiding Question
Suppose T ∈ L(F3) such that

M(T, {e1, e2, e3}) =

2 0 0
0 3 0
0 0 3

 ,

where {e1, e2, e3} is the standard basis of F3. Does there exist a basis v1, v2, v3 of F3 such that

M(T, {v1, v2, v3}) =

2 0 0
0 2 0
0 0 3

?

We will compute E(2, T ) with respect to each of the different bases. First, by the matrix form of T with respect
to the standard basis, we know that

Te1 = 2e1

Te2 = 3e2

Te3 = 3e3.

Then, it is clear that

(T − 2id)e1 = 0

(T − 2id)e2 = e2

(T − 2id)e2 = e3.

It follows that Null(T − 2id) is spanned by e1, so E(2, T ) = span(e1). Thus, E(2, T ) is a 1-dimensional subspace.

Now, by similar logic as above, the matrix form of T with respect to {v1, v2, v3} implies that E(2, T ) =
span(v1, v2). However, this implies that E(2, T ) is a 2-dimensional subspace, which is a contradiction. Therefore,
it is impossible to have two different bases where the eigenvalues of T appear with different multiplicities.

In general, we can make the following statement.

Fact 13.9
Suppose

M(T, {v1, . . . , vn}) =


λ1

λ2
. . .

λn

 .

Then, E(λT ) = span({vi|λi = λ}).

Note that if λ does not appear on the diagonal, then E(λ, T ) = {0}, so λ is not an eigenvalue of T. Additionally, it
is clear from this statement that dimE(λ, T ) is equivalent to the number of times λ appears among λ1, λ2, . . . , λn.
Thus, while the order of the diagonal entries λ1, l2, . . . , ln may vary depending on the basis, the multiplicities
of each value are always the same.

Finally, while we have only shown Fact 13.9 to be true for diagonal matrices, it can be shown this statement is
also true for upper-triangular matrices (proof covered in a later lecture).

Recall that if λ1, λ2, . . . , λm are distinct eigenvalues, then the corresponding eigenvalues v1, v2, . . . , vm are
linearly independent.
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Corollary 13.10
Let {λ1, . . . , λm} be the set of eigenvalues of T ∈ L(V ). Then,

E(λ1, T ) + · · ·+ E(λm, T )

is a direct sum.

Proof. To prove that this is a direct sum, we must show that for vi ∈ E(λi, T ) such that v1 + v2 + · · ·+ vm = 0,
then all vi = 0. However, since λ1, λ2, . . . , λm are distinct, it follows that v1, v2, . . . , vm are linearly independent,
so all vi = 0.

13.5 Diagonalizable Operators
Consider the following example.

Example 13.11
Suppose T ∈ L(F2) such that

M(T ) =

(
0 1
0 0

)
.

Then, 0 is the only eigenvalue of T. It follows that E(0, T ) = Null(T ) = span(e1). Thus, 0 being the only
eigenvalue of T does not necessarily imply that E(0, T ) spans the entire vector space F2.

In fact, Corollary 13.10 implies that

dimE(λ1, T ) + dimE(λ2, T ) + · · ·+ dimE(λm, T ) ≤ dimV,

since E(λi, T ) are all subspaces of V.

Now, we are ready to make a new definition.

Definition 13.12
An operator T ∈ L(V ) is diagonalizable if M(T ) under some basis of V is diagonal.

Proposition 13.13
Suppose T ∈ L(V ) and {λ1, λ2, . . . , λm} are the eigenvalues of T. Then, the following are equivalent:

1. T is diagonalizable;

2. V has a basis consisting of eigenvectors;

3. E(λ1, T )⊕ E(λ2, T )⊕ · · · ⊕ E(λm, T ) = V ;

4.
∑m

i=1E(λi, T ) = dimV.

Proof. First, we still show that (3) and (4) are equivalent. In the general case, we know that

E(λ1, T )⊕ E(λ2, T )⊕ · · · ⊕ E(λm, T ) ⊂ V.

Then, if
∑m

i=1E(λi, T ) = dimV, it is clear that the inclusion above must become the equality E(λ1, T ) ⊕
E(λ2, T )⊕ · · · ⊕ E(λm, T ) = V. Similarly, in the general case,

m∑
i=1

E(λi, T ) ≤ dimV.

Then, if E(λ1, T )⊕E(λ2, T )⊕· · ·⊕E(λm, T ) = V, it is clear that the inequality above must become the equality∑m
i=1E(λi, T ) = dimV. Thus, (3) and (4) are equivalent.
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Now, we will show that (1) implies (2). Suppose T is diagonalizable. Then, there exists a basis v1, v2, . . . , vn of
V such that

M(T ) =


a1

a2
. . .

an

 .

This implies that Tvi = aivi, so each vi is an eigenvector with eigenvalue ai. Therefore, v1, v2, . . . , vn is a basis
of of V consisting of eigenvectors.

Now, we will show that (2) implies (3). Suppose we have a basis v1, v2, . . . , vn of V consisting of eigenvectors.
Then, each vi ∈ E(λj , T ) for some j. It follows that all basis vectors

v1, v2, . . . , vn ∈ E(λ1, T )⊕ E(λ2, T )⊕ · · · ⊕ E(λm, T ),

so span(v1, v2, . . . , vn) = V ⊂ E(λ1, T )⊕ E(λ2, T )⊕ · · · ⊕ E(λm, T ). Furthermore, by the definition of sum of
subspaces, we know that E(λ1, T ) ⊕ E(λ2, T ) ⊕ · · · ⊕ E(λm, T ) ⊂ V. Therefore, E(λ1, T ) ⊕ E(λ2, T ) ⊕ · · · ⊕
E(λm, T ) = V.

Lastly, we will show that (3) implies (1). Suppose E(λ1, T )⊕E(λ2, T )⊕· · ·⊕E(λm, T ) = V. Let dimE(λi, T ) = di.
Then, choose a basis vi,1, vi,2, . . . , vi,di

of E(λi, T ) for i = 1, 2, . . . ,m. It follows that

v1,1, v1,2, . . . , v1,d1
, v2,1, v2,2, . . . , v2,d2

, . . . , . . . , vm,1, vm2
, . . . , vm,dm

is a basis of V. Under this basis, M(T ) becomes the diagonal matrix

M(T ) =


λ1

λ2
. . .

λm

 ,

where the big λi represents the diagonal matrix of size di×di with all diagonal entries λi (in other words, M(T )
is the diagonal matrix where each λi appears exactly di times). Thus, T is diagonalizable.

78



Lecture 14: Inner Product Spaces

14 Inner Product Spaces

14.1 Review
Last time, we discussed the notion of eigenspaces, where for any T ∈ L(V ) and λ ∈ F, the eigenspace of T
corresponding to λ is defined as E(λ, T ) = {v ∈ V |Tv = λv}. Furthermore, if {λ1, . . . , λm} are all eigenvalues
of T, then E(λ1, T )⊕ · · · ⊕ E(λm, T ) ⊂ V. This also implies that

∑m
i=1 dimE(λi, T ) ≤ dimV.

14.2 Diagonal Operators (continued)
In this section, we will wrap-up our discussion of diagonal operators from last lecture. Note that if λ is an
eigenvalue of T, then dimE(λ, T ) ≥ 1. So

∑m
i=1 dimE(λi, T ) ≥ m.

Theorem 14.1
Suppose T ∈ L(V ) and T has dimV distinct eigenvalues. Then, T is diagonalizable.

Proof. Let n = dimV. Then,
m∑
i=1

dimE(λi, T ) ≥ dimV,

since dimE(λi, T ) ≥ 1 for all λi. By the definition of direct sum, we know that

m∑
i=1

dimE(λi, T ) ≤ dimV.

It follows that
∑m

i=1 dimE(λi, T ) = dimV, which implies that T is diagonaliazble by Theoream 13.13.

Example 14.2
Suppose T ∈ L(V ) has corresponding matrix 1 ∗ ∗

0 2 ∗
0 0 3

 .

Then, T has 3 distinct eigenvalues λ = 1, 2, 3, so T is diagonalizable.

14.3 Inner Product Spaces
Previously, we have been considering abstract vector spaces, which are sets of vectors with abstract addition and
scalar multiplication. Now, inner product spaces are vector spaces with one piece of extra structure: namely,
the notion of the length (also called the norm) of a vector.

Before we give a definition of an inner product, let’s look at two standard examples.

Example 14.3
Suppose V = Rn. Then, the dot product of vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) is defined by

x · y = x1y1 + x2y2 + · · ·+ xnyn.

Note that x · y ∈ R. The dot product is also known as the Euclidean product.

The norm of x (denoted as ||x||) is defined by

||x|| =
√
x · x =

√
x21 + x22 + · · ·x2n.

From our knowledge of Rn, it is clear that this definition of the norm is measuring the length of x.
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Example 14.4
Suppose V = Cn. Then, ⟨x, y⟩ for vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) is defined by

⟨x, y⟩ = x1y1 + x2y2 + · · ·+ xnyn.

Note that ⟨x, y⟩ ∈ C. This product is also known as the Hermitian product.

The norm of x is similarly defined by
||x|| =

√
⟨x, x⟩.

Recall that for a complex number z = a+ bi, then zz = |z|2 = a2 + b2. So,

⟨x, x⟩ = x1x1 + · · ·+ xnxn = |x1|2 + · · · |xn|2 ≥ 0

Thus, ⟨x, x⟩ is a nonnegative real number, so ||x|| is well-defined.

Now, we will give more evidence to show that this definition of the norm is measuring the length of x. Let
c ∈ C. Then,

⟨cx, cx⟩ = |cx1|2 + · · ·+ |cxn|2

= |c|2(|x1|2 + · · ·+ |xn|2)
= |c|2⟨x, x⟩.

Thus, ||cx|| =
√
⟨cx, cx⟩ = |c|

√
⟨x, x⟩ = |c| ||x||. Therefore, if some vector is scaled by a factor of c, then its

norm (or length) is scaled by a factor of |c|.

Now, we are ready to give the formal definition of the inner product. First, we will consider inner products over
real vector spaces.

Definition 14.5 (inner product over R-vector space)
Suppose V is a R-vector space. An inner product on V is a function that takes each ordered pair (x, y)
of vectors in V to the number ⟨x, y⟩ ∈ R and satisfies the following conditions:

• additivity in the first variable: ⟨x+ x′, y⟩ = ⟨x, y⟩+ ⟨x′, y⟩

• homogeneity in the first variable: ⟨cx, y⟩ = c⟨x, y⟩ for all c ∈ R

• symmetry: ⟨x, y⟩ = ⟨y, x⟩

• positivity: ⟨x, x⟩ ≥ 0

• definiteness: ⟨x, x⟩ = 0 if and only if x = 0

Let’s verify that the dot product on Rn is an inner product.

Example 14.6
Suppose ⟨x, y⟩ = x · y = x1y1 + · · ·+ xny + n. We must verify all the necessary conditions:

• additivity in the first variable: (x+ x′) · y = (x1 + x′1)y1 + · · ·+ (xn + x′n)yn = (x1y1 + · · ·+ xnyn) +
(x′1y1 + · · ·+ x′nyn) = x · y + x′ · y

• homogeneity in the first variable: (cx) · y = cx1y1 + · · ·+ cxnyn = c(x · y)

• symmetry: x · y = x1y1 + · · ·+ xnyn = y1x1 + · · ·+ ynxny · x

• positivity: x · x = x21 + · · ·+ x2n ≥ 0

• definiteness: x · x = x21 + · · ·+ x2n = 0 ⇐⇒ x1 = · · · = xn = 0 ⇐⇒ x = 0

Thus, x · y is an inner product on Rn.

We can use the notation V, ⟨·, ·⟩ to represent a vector space V with inner product ⟨·, ·⟩.
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By the definition of an inner product, ⟨·, ·⟩ is additive and homogeneous in the first variable.

Guiding Question
Is ⟨·, ·⟩ also additive and homogeneous in the second variable?

Answer. Yes! We know that

⟨x, y + z⟩ = ⟨y + z, x⟩
= ⟨y, x⟩+ ⟨z, x⟩
= ⟨x, y⟩+ ⟨x, z⟩,

where the second equality follows from additivity in the first variable and the first and third inequalities follow
from symmetry. Thus, ⟨·, ·⟩ is additive in the second variable. The proof to show that ⟨·, ·⟩ is homogeneous in
the second variable is identical.25

Now, we will define inner products over complex vector spaces.

Definition 14.7 (inner product over C-vector space)
Suppose V is a C-vector space. An inner product on V is a function that takes each ordered pair (x, y)
of vectors in V to the number ⟨x, y⟩ ∈ C and satisfies the following conditions:

• additivity in the first variable: ⟨x+ x′, y⟩ = ⟨x, y⟩+ ⟨x′, y⟩

• homogeneity in the first variable: ⟨cx, y⟩ = c⟨x, y⟩ for all c ∈ C

• conjugate symmetry: ⟨x, y⟩ = ⟨y, x⟩

• positivity: ⟨x, x⟩ ≥ 0

• definiteness: ⟨x, x⟩ = 0 if and only if x = 0

Note that the main difference between inner products in real and complex vector spaces is the third condition
(conjugate symmetry instead of symmetry).

Example 14.8
Let’s verify that ⟨x, y⟩ = x1y1 + · · ·+ xnyn is an inner product in Cn. We know that

⟨x, y⟩ = x1y1 + · · ·+ xnyn

= x1y1 + · · ·+ xnyn

= ⟨y, x⟩,

so ⟨·, ·⟩ satisfies conjugate symmetry. The verification of the rest of the conditions is analogous to Example
14.6.

Recall that real inner products are also additive and homogeneous over the second variable.

Guiding Question
Are complex vector spaces also additive and homogeneous over the second variable?

Answer. Sort of ! Complex inner products are additive over the second variable, the proof of which is identical
to the real case. However,

⟨x, cy⟩ = ⟨cy, x⟩

= c⟨y, x⟩
= c⟨x, y⟩,

25We say that ⟨·, ·⟩ is bilinear, meaning that ⟨·, ·⟩ is linear in both variables.
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where the second equality follows from homogeneity over the second variable and the first and third equalities
follows from conjugate symmetry. Thus, ⟨·, ·⟩ has conjugate homogeneity over the second variable.26

So far, we have only looked at our two standard examples of inner product spaces. Now, we will give more
examples.

Example 14.9
First, we will look at a slight variation of our standard example. Suppose V = Cn and define

⟨x, y⟩ = c1x1y1 + · · ·+ cnxnyn

for c1, . . . , cn ∈ C. Under what values of c1, . . . , cn is ⟨·, ·⟩ an inner product space?

To answer this question, we must check the five conditions in Definition 14.7.

• Additivity and homogeneity: It is easy to verify that ⟨·, ·⟩ satisfies additivity and homogeneity in the
first slot for any c1, . . . , cn.

• Conjugate symmetry: Note that

⟨x, y⟩ = ⟨y, x⟩
= c1y1x1 + · · ·+ cnynxn

= c1x1y1 + · · ·+ cnxnyn.

So, to satisfy conjugate symmetry, ci = ci for all ci. In other words, all ci must be real.

• Positivity: Note that
⟨x, x⟩ = c1|x1|2 + · · ·+ cn|xn|2 ≥ 0.

Since x is arbitrary, we can choose x to be the vector such that xi = 1 and all other entries are 0,
which implies that all ci ≥ 0.

• Definiteness: If any ci = 0, then let x be the vector such that xi = 1 and all other entries are 0. Then

⟨x, x⟩ = c1 · 0 + · · ·+ ci · 1 + · · ·+ cn · 0 = ci = 0,

which violates definiteness. Thus, all ci > 0.

In conclusion, ⟨x, y⟩ = c1x1y1 + · · ·+ cnxnyn is an inner product if c1, . . . , cn are positive real numbers.

Example 14.10
Suppose V = Rn and define

⟨x, y⟩ = c1x1y1 + · · ·+ cnxnyn

for c1, . . . , cn ∈ R. By reasoning identical to the logic in Example 14.9, ⟨·, ·⟩ is an inner product when
c1, . . . , cn are positive.

26We say that ⟨·, ·⟩ is sesquilinear (the prefix sesqui meaning "one and a half"), meaning that ⟨·, ·⟩ is linear in the first variable,
but only additive and conjugate homogeneous in the second variable.
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Example 14.11
Suppose V = C2 and define

⟨x, y⟩ = x1y2 + x2y1.

Then,
⟨x, x⟩ = x1x2 + x2x1 = 2Re(x1x2),

where the last equality follows from that x1x2 = x2x1. Since x1, x2 are arbitrary, x1x2 can essentially be any
complex number, in particular a number with a negative real part, which violates positivity. For instance,
if x = (1,−1), then

⟨x, x⟩ = (1)(−1) + (−1)(1) = −2 < 0.

Thus, ⟨·, ·⟩ is not a valid inner product space.

Furthermore, if x1x2 is purely imaginary, then ⟨x, x⟩ = 2Re(x1x2) = 0 where x is not necessarily 0. Thus,
⟨·, ·⟩ also violates definiteness.

Before we move onto the next section, we will need the following definition. Recall that in Example 14.4, we
defined the norm of x as ||x|| =

√
⟨x, x⟩. Now, we will expand this definition to the general case.

Definition 14.12 (norm)
Suppose V, ⟨·, ·⟩ is any inner product space. Then, for x ∈ V, the norm of x is given by

||x|| =
√
⟨x, x⟩.

14.4 Orthogonality
Let V, ⟨·, ·⟩ be an inner product space.

Definition 14.13 (orthogonal)
Let vectors u, v ∈ V. Then, u is orthogonal to v if ⟨u, v⟩ = 0.a

aThe notation u⊥v is used to mean "u is orthogonal to v."

To better understand this definition, we will first show that this definition of orthogonal vectors makes sense in
R2.

Suppose V = R2 and ⟨·, ·⟩ is the dot product. Let u, v ∈ V be nonzero vectors as seen in the diagram below.

0

u

v

We will show that u · v = 0 if and only if the angle between u and v is 90◦. To prove this, we will first need the
following lemma.

Lemma 14.14
Suppose V, ⟨·, ·⟩ is any inner product space. If ⟨u, v⟩ = 0, then

||u+ v||2 = ||u||2 + ||v||2.a

aIn Axler, this is referred to as the Pythagorean Theorem.
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Proof. It follows that

||u+ v||2 = ⟨u+ v, u+ v⟩
= ⟨u, u+ v⟩+ ⟨v, u+ v⟩
= ⟨u, u⟩+ ⟨u, v⟩+ ⟨v, u⟩+ ⟨v, v⟩
= ||u||2 + ||v||2,

where the last equality follows from ⟨u, v⟩ = ⟨v, u⟩ = 0.

Now, consider the triangle in the diagram below.

0

u

v

||u||

||v||

It is clear that the two legs of the triangle have lengths ||u|| and ||v||.

Guiding Question
How can we describe the orange vector in terms of vectors u and v?

Answer. One way to find the answer is to see this is to translate the orange vector so that it begins at the
origin.

0

u

v

||u||

||v||

−u
v − u

From this, it is clear that the orange vector is v − u.

Thus, the triangle has side lengths ||u||, ||v||, and ||v − u||. Suppose that u · v = 0. Then, it follows that
(−u) · v = −(u · v) = 0. By Lemma 14.14,

||v − u||2 = ||v||2 + || − u||2.

Finally, we know that || − u|| = ||u||, so

||v − u||2 = ||v||2 + ||u||2.

Now, let the angle between u and v have degree measure θ.
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0

u

v

||u||

||v||
||v − u||

θ

By the Law of Cosines,

cos θ =
||v||2 + ||u||2 − ||v − u||2

2||v|| ||u||
.

However, we know that ||v||2 + ||u||2 − ||v − u||2 = 0, so cos θ = 0. Therefore, θ = 90◦, as desired.

Thus, our definition of orthogonality in Definition 14.13 makes sense with the usual sense of orthogonality in
R2.

14.5 Cauchy-Schwarz Inequality
Now, we will introduce the Cauchy-Schwarz Inequality.

Theorem 14.15 (Cauchy-Schwarz Inequality)
Suppose V, ⟨·, ·⟩ is an inner product space and u, v ∈ V. Then,

|⟨u, v⟩| ≤ ||u|| ||v||.

We will leave the proof of this for next lecture. First, we will use the two standard examples from earlier to give
us a better understand of what the Cauchy-Schwarz Inequality is telling us.

Example 14.16
Suppose V = Rn and ⟨·, ·⟩ is the dot product. Let x, y ∈ V. By the Cauchy-Schwarz Inequality,

|x · y| ≤ ||x|| ||y||.

Squaring both sides and expanding out the dot product gives

(x1y1 + · · ·+ xnyn)
2 ≤ (x21 + · · ·+ x2n)(y

2
1 + · · ·+ y2n).

A special case of this result is given by taking y1 = · · · = yn = 1, which gives

(x1 + · · ·+ xn)
2 ≤ n(x21 + · · ·+ x2n).

a

A familiar example of the above inequality is the n = 2 case,

(x1 + x2)
2 ≤ 2(x21 + x22).

Expanding out both sides and moving all the terms to one side gives

0 ≤ (x1 − x2)
2,

which is the trivial inequality.b

aThis kind of inequality is frequently used in calculus or mathematical analysis in order to approximate certain quantities.
bIt is also possible to prove the general case (x1 + · · ·+ xn)2 ≤ n(x2

1 + · · ·+ x2
n) in a similar fashion to the n = 2 case using

the trivial inequality.
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Example 14.17
Suppose V = Cn and ⟨·, ·⟩ is defined as in Example 14.4. Let x, y ∈ V. Then, squaring both sides of the
Cauchy-Schwarz Inequality gives us

|x1y1 + · · ·+ xnyn|2 ≤ (|x1|2 + · · ·+ |xn|2)(|y1|2 + · · ·+ |yn|2).
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15 Cauchy-Schwarz Inequality and Orthonormal Bases

15.1 Review
Last time, we introduced the inner product space and ended with the Cauchy-Schwarz Inequality. Recall
Theorem 14.15 for the statement of the Cauchy-Schwarz Inequality.

Before we prove the Cauchy-Schwarz inequality, we first need the notion of orthogonal decomposition.

15.2 Orthogonal Decomposition
Suppose we have two vectors u and v in the two-dimensional real plane. We wish to decompose u into the sum
of two vectors, one which is parallel to v and one which is perpendicular to v.

u

v

In the general case, we want to express u as
u = cv + w

where c ∈ F and w is orthogonal to v.

If v = 0, then the orthogonal decomposition of u is simply w, since all vectors are orthogonal to the zero vector.

Now, assume v ̸= 0. Suppose we have the decomposition u = cv + w with w orthogonal to v. Then,

⟨u, v⟩ = ⟨cv + w, v⟩
= c⟨v, v⟩+ ⟨w, v⟩
= c⟨v, v⟩.

It follows that c = ⟨u,v⟩
⟨v,v⟩ and w = u− ⟨u,v⟩

⟨v,v⟩v. We can also verify that our expression for w is indeed orthogonal
to v :

⟨w, v⟩ = ⟨u− ⟨u,v⟩
⟨v,v⟩v, v⟩

= ⟨u, v⟩ − ⟨u,v⟩
⟨v,v⟩ ⟨v, v⟩

= 0.

Theorem 15.1 (orthogonal decomposition)
Suppose u, v ∈ V with v ̸= 0. Let c = ⟨u,v⟩

⟨v,v⟩ and w = u− ⟨u,v⟩
⟨v,v⟩v. Then, u can be expressed as

u = cv + w

such that w is orthogonal to v.

Now, we are ready to prove the Cauchy-Schwarz Inequality.

15.3 Cauchy-Schwarz Inequality (continued)
As a sidenote, note that the statement of the Cauchy-Schwarz Inequality does not require V to be finite-
dimensional. This is intuitive because the Cauchy-Schwarz Inequality only involves two vectors u and v, so
you can always restrict your attention to the subspace spanned by u and v. Later, we will look at examples of
infinite-dimensional inner product spaces, and Cauchy-Schwarz will still have applications there.

Now, we will prove the Cauchy-Schwarz Inequality.
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Proof of Cauchy-Schwarz Inequality (Theorem 14.15). If v = 0, then both sides of the desired inequality equal
0, and we are done. Thus, assume v ̸= 0. Consider the orthogonal decomposition

u = cv + w

as described in Theorem 15.1. Then,

⟨u, v⟩ = ⟨cv + w, v⟩ = c⟨v, v⟩ = c||v||2

since ⟨w, v⟩ = 0. Furthermore,

||u|| =
√
⟨u, u⟩

=
√

⟨cv + w, cv + w⟩

=
√
⟨cv, cv⟩+ ⟨cv, w⟩+ ⟨w, cv⟩+ ⟨w,w⟩

=
√
⟨cv, cv⟩+ ⟨w,w⟩

=
√
||cv||2 + ||w||2

≥ ||cv||
= |c| ||v||.

It follows that

||u|| ||v|| ≥ |c| ||v|| ||v||
= |c| ||v||2

= |⟨u, v⟩|,

which gives the desired inequality.

Guiding Question
When does equality hold in the Cauchy-Schwarz Inequality?

Answer. Equality holds when
√

||cv||2 + ||w||2 = ||cv||, so w = 0. This implies that u = cv, so u is a scalar
multiple of v.

Conversely, if u = cv for some c ∈ C, then

⟨u, v⟩ = |c|⟨v, v⟩ = |c| ||v||2 = ||u|| ||v||.

Therefore, equality holds if and only if u is a scalar multiple of v. Note that this includes the case where u or v
is the zero vector.

Now, we will look at an infinite-dimensional example of the Cauchy-Schwarz Inequality.

88



Lecture 15: Cauchy-Schwarz Inequality and Orthonormal Bases

Example 15.2
Suppose V be the set of all continuous functions f : [−1, 1] → R. Note that V contains all real-valued
polynomials, so V must be infinite-dimensional (since P(R) is already infinite-dimensional).

Let f, g ∈ V. Then

⟨f, g⟩ =
∫ 1

−1

f(x)g(x) dx

is an inner product on V. It is clear that additivity, homogeneity, and symmetry hold. We know that

||f || =
√
⟨f, f⟩ =

(∫ 1

−1

(
f(x)

)2
dx

) 1
2

.

Thus, positivity holds because f(x)2 ≥ 0. Finally, it follows that ||f || = 0 if and only if f = 0, so definiteness
holds.

Now, applying Cauchy-Schwarz to f, g and squaring both sides gives(∫ 1

−1

f(x)g(x) dx

)2

≤
(∫ 1

−1

(
f(x)

)2)(∫ 1

−1

(
g(x)

)2)
.

Guiding Question
Compare the above inequality with the following inequality from Example 14.16:

(x1y1 + · · ·+ xnyn)
2 ≤ (x21 + · · ·+ x2n)(y

2
1 + · · ·+ y2n).

What is similar between these two inequalities?

Answer. Consider the area under the blue curve in the following diagram:

−1 1

The expression
∫ 1

−1
f(x)g(x) dx can be seen as taking the area using an integral, while the expression x1y1 +

· · ·+ xnyn can be seen as taking the area using a Riemann sum. Thus, the inequality from Example 14.15 can
be seen as a discrete version of the continuous inequality from Example 15.2. Note that the discrete version of
the inequality comes from a finite-dimensional inner product space, while the continuous version comes from an
infinite-dimensional inner product space.

Now, we will discuss another important inequality, known as the Triangle Inequality. This inequality comes
from the elementary observation that the sum of any two sides of a triangle must be greater than or equal to
the third side. In other words, a+ b ≥ c.

a

b

c

If we interpret the above diagram in terms of vectors, we find that a = ||u||, b = ||v||, and c = ||u− v||.
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u

v

Thus,
||u||+ ||v|| ≥ ||u− v||.

Since ||v|| = || − v||, we can replace v with −v in the above inequality to get the Triangle Inequality:

||u||+ ||v|| ≥ ||u+ v||.

While this example only concerns the two-dimensional plane, the Triangle Inequality can be expanded to any
inner product space.

Theorem 15.3 (Triangle Inequality)
Suppose u, v ∈ V. Then,

||u+ v|| ≤ ||u||+ ||v||.

Proof. It is equivalent to show that
||u+ v||2 ≤ (||u||+ ||v||)2.

Then,

||u+ v||2 = ⟨u+ v, u+ v⟩
= ⟨u, u⟩+ ⟨u, v⟩+ ⟨v, u⟩+ ⟨v, v⟩

= ⟨u, u⟩+ ⟨v, v⟩+ ⟨u, v⟩+ ⟨u, u⟩
= ||u||2 + ||v||2 + 2Re⟨u, v⟩
≤ ||u||2 + ||v||2 + 2|⟨u, v⟩|
≤ ||u||2 + ||v||2 + 2||u|| ||v||
= (||u||+ ||v||)2,

where the last inequality follows from the Cauchy-Schwarz Inequality.

15.4 Orthonormal Bases
We will shift our discussion to the topic of orthonormal bases. First, we will need the following definition.

Definition 15.4 (orthonormal)
A list of vectors v1, v2, . . . , vn is orthonormal if{

⟨vi, vj⟩ = 0 for i ̸= j,

||vi|| = 1 ∀ i = 1, . . . , n.

Equivalently,

⟨vi, vj⟩ = δij =

{
1 i = j,

0 i ̸= j.
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Example 15.5
In Rn, the standard basis

e1 = (1, 0, . . . , 0)

...
en = (0, . . . , 0, 1)

is an orthonormal list.

The folllowing is an important lemma.

Lemma 15.6
Any orthonormal list is linearly independent.

Proof. Suppose v1, . . . , vn be an orthonormal list. Let c1, . . . , cn be scalars such that

c1v1 + c2v2 + · · ·+ cncn = 0.

Taking the inner product of the left-hand side with vi, we get

⟨c1v1 + · · ·+ cnvn, vi⟩ = ⟨c1v1, vi⟩+ · · ·+ ⟨civi, vi⟩+ · · ·+ ⟨cn, vn, vi⟩
= ⟨civi, vi⟩
= ci.

This has to be equivalent to ⟨0, vi⟩ = 0, so ci = 0 for all i = 1, 2, . . . , n. Therefore, v1, . . . , vn is linearly
independent.

Thus, all orthonormal lists are linearly independent. Therefore, if we have the right number of vectors in an
orthonormal list, the list must form a basis.

Definition 15.7 (orthonormal basis)
An orthonormal basis of V is an orthonormal list that is also a basis of V.

Equivalently, an orthonormal basis is an orthonormal list of dimV vectors.

Example 15.8
The standard basis of Rn is an orthonormal basis.

Example 15.9
Suppose V = Pn(R) with inner product

⟨f, g⟩ =
∫ 1

−1

f(x)g(x) dx.

Consider the basis 1, x, x2, . . . , xn. Then,

⟨fi, fj⟩ =
∫ 1

−1

xixj dx =

∫ 1

−1

xi+j dx =

{
0 if i+ j is odd,

2
i+j+1 if i+ j is even.

Thus, it is clear that 1, x, x2, . . . , xn is not an orthonormal basis. For instance,

⟨f1, f1⟩ =
2

3
̸= 1 and ⟨f0, f2⟩ =

2

3
̸= 0.

Now, we will discuss why orthonormal bases are useful.
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Theorem 15.10
Suppose e1, e2, . . . , en is an orthonormal basis of V and v ∈ V. Then,

v = ⟨v, e1⟩e1 + ⟨v, e2⟩e2 + · · ·+ ⟨v, en⟩en.

Proof. Since e1, . . . , en is a basis, there exists scalars c1, . . . , cn such that

v = c1e1 + · · ·+ cnen.

Then,

⟨v, ei⟩ = ⟨c1e1 + · · ·+ cnen, ei⟩
= c1⟨e1, ei⟩+ · · ·+ ci⟨ei, ei⟩+ · · ·+ cn⟨en, ei⟩
= ci,

as desired.

Note that if e1, . . . , en is not an orthonormal basis, finding coefficients c1, . . . , cn would require solving a system
of n equations in n variables. Thus, finding coefficients c1, . . . , cn is much easier with an orthonormal basis.

15.5 Gram-Schmidt Procedure
Now, we will show that every vector space has an orthonormal basis, as well as how to find such an orthonormal
basis.

Algorithm 15.11 (Gram-Schmidt Procedure)
Suppose v1, . . . , vn is a basis of V. Then, there exists an orthonormal basis e1, . . . , en of V such that

ej ∈ span(v1, . . . , vj)

for j = 1, . . . , n.

We will break down the algorithm into steps:

• Step 1: Since e1 ∈ span(v1), it follows that e1 = c1v1 for some scalar c1. We want

||e1|| = ||c1v1|| = |c1| ||v1|| = 1,

so |c1| = 1
||v1|| . Thus, we can let c1 = 1

v1
, so e1 = v1/||v1||.27

• Step 2: We know that e2 ∈ span(v1, v2) = span(e1, v2). Let e2 = c1e1 + c2v2. We want

⟨e2, e1⟩ = ⟨c1e1 + c2v2, e1⟩
= c1⟨e1, e1⟩+ c2⟨e1, v2⟩
= c1 + c2⟨v2, e1⟩
= 0,

so c1 = −c2⟨v2, e1⟩. Then, by taking c1 = 1, it follows that

e′2 = v2 − ⟨v2, e1⟩e1

satisfies ⟨e′2, e1⟩ = 0. Now, we also want ⟨e2, e2⟩ = 1, which we can obtain by normalizing e′2. Thus,

e2 =
e′2

||e′2||
=

v2 − ⟨v2, e1⟩e1
||v2 − ⟨v2, e1⟩e1||

.

27This procedure is called normalizing v1 (i.e. scaling v1 to have norm equal to 1).
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• Step 3: Similarly to Step 2, ⟨e′3, e1⟩ = ⟨e′3, e2⟩ = 0. By the same logic as Step 2, it follows that

c1 = −⟨v3, e1⟩ and c2 = −⟨v3, e2⟩,

so e′3 = v3 − ⟨v3, e1⟩e1 − ⟨v3, e2⟩e2. Thus,

e3 =
e′3

||e′3||
=

v3 − ⟨v3, e1⟩e1 − ⟨v3, e2⟩e2
||v3 − ⟨v3, e1⟩e1 − ⟨v3, e2⟩e2||

.

Finally, if we repeat this procedure for a total of n steps, the result will be an orthonormal basis e1, . . . , en.

Example 15.12
Consider the inner product space P2(R) with

⟨f, g⟩ =
∫ 1

−1

f(x)g(x) dx.

Consider the basis
f0 = 1, f1 = x, f2 = x2.

We will use the Gram-Schmidt Procedure to find an orthonormal basis of P2(R).

First, recall from Example 15.9 that

⟨fi, fj⟩ =

{
0 if i+ j is odd,

2
i+j+1 if i+ j is even.

• Step 1: We know that ⟨f0, f0⟩ = 2
0+0+1 = 2. Thus,

e0 =
f0

||f0||
=

1√
2
.

• Step 2: Recall that e′1 = f1 − ⟨f1, e0⟩e0. We know that ⟨f1, e0⟩ = 1√
2
⟨f1, f0⟩ = 0, so e′1 = f1. Thus,

e1 =
f1

||f1||
=

x
2

1+1+1

=

√
3

2
x.

• Step 3: Recall that e′2 = f2 − ⟨f2, e0⟩e0 − ⟨f2, e1⟩e1. We know that

⟨f2, e0⟩ =
1√
2
⟨f2, f0⟩ =

√
2

3
and ⟨f2, e1⟩ =

√
3

2
x⟨f2, f1⟩ = 0,

so e′2 = x2 − sqrt2
3 · 1√

2
= x2 − 1

3 . Then,

||e′2||2 = ⟨e′2, e′2⟩ =
∫ 1

−1

(
x4 − 2

3
x+

1

9

)
dx =

8

45
,

so

e2 =
e′2

||e′2||
=

√
45

8

(
x2 − 1

3

)
.

Therefore,
1√
2
,

√
3

2
x,

√
45

8

(
x2 − 1

3

)
,

is an orthonormal basis of P2(R).
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16 Gram-Schmidt Procedure and Orthogonal Projection

16.1 Review
Last time, we talked about the notion of orthonormal bases (see Definition 15.7) and Gram-Schmidt Procedure
(see Algorithm 15.11).

16.2 Matrix Representation of Inner Products
Suppose V is an inner product space over C. Then, the inner product ⟨·, ·⟩ can be represented as a matrix.

To do this, choose an arbitrary basis v1, . . . , vn of V. Then, let A be the n×n matrix such that

A =
(
⟨vi, vj⟩

)
i,j
.

If we know ⟨vi, vj⟩ for all i, j, then we can compute ⟨u, v⟩ for all u, v ∈ V. Let

u =

n∑
i=1

aivi and v =

n∑
i=1

bivi.

Then, by linearity and conjugate linearity of inner products, it follows that

⟨u, v⟩ =
n∑

i,j=1

aibj⟨vi, vj⟩.

Thus, the inner product of any two vectors in V are completely determined by the entries of A.

However, the matrix A are not arbitrary: in particular, A must satisfy some specific properties:

• By conjugate symmetry, ⟨vi, vj⟩ = vj , vi. Thus, Aij = Aji.
28 In particular, Aii ∈ R.

Guiding Question
It is clear that the 2×2 matrix

A =

(
1 i
−i 0

)
satisfies the condition Aij = Aji. However, can matrix A be the matrix representation of some ⟨·, ·⟩?

Answer. The 0 entry in A implies that ⟨v2, v2⟩ = 0, which occurs if and only if v2 = 0. However, v2 is a basis
vector, so it must be nonzero. Therefore, A does not represent an inner product.

This gives us another condition of matrix representations of inner products:

• By positivity, ⟨vi, vi⟩ ≥ 0. Since vi is a basis vector, it follows that ⟨vi, vi⟩ > 0. So, the elements on the
diagonal of A must be positive real numbers.

However, even these two conditions are not enough to guarantee that matrix A represents an inner product!
We will come back to these conditions in a later lecture.

Note that matrix A is a concrete representation of an inner product on V. For instance, you could input matrix
A into a computer and be able to compute the inner product for any two vectors in V, without the computer
having to understand anything about abstract inner product spaces.

16.3 Gram-Schmidt Procedure (continued)
In this section, we will discuss some consequences of the Gram-Schmidt Procedure.

Theorem 16.1
Suppose V is a finite-dimensional inner product space. Then,

(a) V has an orthonormal basis,

(b) if e1, . . . , em is an orthonormal list, then it can be extended to an orthonormal basis.

28Matrices that satisfy this condition are known as Hermitian matrices. Note that if the entries of a matrix are all real, Hermitian
matrices are the same as symmetric matrices.
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Proof. For (a), let v1, . . . , vn be an arbitrary basis of V. Then, applying Gram-Schmidt gives an orthonormal
list e1, . . . , en which has length dimV, so e1, . . . , en is an orthonormal basis

For (b), extend the orthonormal list to an arbitrary basis e1, . . . , em, vm+1, . . . , vn of V. Then, applying Gram-
Schmidt gives an orthonormal list e1, . . . , em, em+1, . . . , en, where the first m vectors are unchanged because
they are already orthonormal. This orthonormal list has length dimV, so it is an orthonormal basis.

Now, consider the following statement.

Theorem 16.2
Suppose e1, . . . , em is the result of applying Gram-Schmidt on a linearly independent list of vectors v1, . . . , vm
in V. Then,

span(e1, . . . , ej) = span(v1, . . . , vj)

for all j = 1, . . . , n.

Proof. By Algorithm 15.11, we know that ei ∈ span(v1, . . . , vi), which implies that

span(e1, . . . , ej) ⊂ span(v1, . . . , vj).

Since both of the above lists are linearly independent, both subspaces have dimension j, and thus are equal.

Now, we will introduce a theorem which is a stronger version of Corollary 13.5.

Theorem 16.3 (Schur’s Theorem)
Suppose V is an inner product space over C and T ∈ L(V ). Then, there exists some orthonormal basis of
V under which M(T ) is upper triangular.

Proof. By Corollary 13.5, there exists some basis v1, . . . , vn such that M(T ) is upper-triangular. This implies
that

T (vi) ∈ span(v1, . . . , vi).

Now, applying Gram-Schmidt to v1, . . . , vn gives an orthonormal basis e1, . . . , en.We will show thatM(T, {e1, . . . , en})
is also upper-triangular. It is equivalent to show that

T (ei) ∈ span(e1, . . . , ei)

for all i = 1, . . . , n.

First, since e1 ∈ span(v1), it follows that e1 = cv1 for some scalar c. Also, since T (v1) ∈ span(v1), it follows that

span(T (v1)) ⊂ span(span(v1)) = span(v1).

Then,
T (e1) = cT (v1) ∈ span(T (v1)) ⊂ span(v1) = span(e1).

For T (e2), by similar logic as above, we can show that

T (e2) ∈ span(T (v1), T (v2)) ⊂ span(span(v1, v2)) = span(v1, v2) = span(e1, e2),

where the last equality follows from Theorem 16.2. In the general case,

T (ei) ∈ span(T (v1), . . . , T (vi) ∈ span(span(v1, . . . , vi)) = span(v1, . . . , vi) = span(e1, . . . , ei),

as desired.
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16.4 Linear Functionals on Inner Product Spaces
Recall that an inner product ⟨·, ·⟩ is not a function on V, but rather a function on two vectors in V. In terms of
notation,

⟨·, ·⟩ : V ×V −→ C.

But, if we fix some vector v ∈ V, then the inner product becomes a function on one vector in V :

⟨·, v⟩ :V −→ C,
u 7−→ ⟨u, v⟩.

Then, by linearity in the first variable, it follows that ⟨·, v⟩ is a linear functional on V. Recall the definition of
linear functionals from Definition —.

It follows that the assignment
v 7−→ ⟨·, v⟩

gives a map from
V −→ L(V,C) = V ′,

where V ′ is the dual space of V (see Definition —).

Theorem 16.4 (Riesz Representation Theorem)
Suppose V is a finite-dimensional vector space over C. Then, the map T : V → V ′ defined by

T (v) = ⟨·, v⟩

is conjugate-linear and bijective.

Proof. First, we will check that T is conjugate-linear; that is, we will check that T satsifies the following two
properties:

• T is additive: T (v1 + v2) = T (v1) + T (v2),

• T is conjugate-homogeneous: T (cv) = cT (v).

Let u ∈ V. Then,

T (v1 + v2)(u) = ⟨u, v1 + v2⟩ = ⟨u, v1⟩+ ⟨u, v2⟩ = T (v1)(u) + T (v2)(u) =
(
T (v1) + T (v2)

)
(u),

so T (v1 + v2) = T (v1) + T (v2). Furthermore,

T (cv)(u) = ⟨u, cv⟩ = c⟨u, v⟩ = c
(
T (v)(u)

)
=
(
cT (v)

)
(u),

so T (cv) = cT (v). Thus, T is conjugate-linear.

Next, we will check that T is injective. First, we will show that T (v) = 0 implies v = 0.29 Let v ∈ V such that
T (v) = 0. Then, (

T (v)
)
(v) = ⟨v, v⟩ = 0,

which implies that v = 0 by definiteness of the inner product. Now, let v1, v2 ∈ V such that T (v1) = T (v2).
Then,

T (v1 − v2) = T (v1)− T (v2) = 0,

so v1 − v2 = 0. Therefore, T is injective.30

Now, we will show that T is surjective.31 Let e1, . . . , en be an orthonormal basis of V. For any φ ∈ V ′, let

S(φ) = φ(e1)e1 + φ(e2)e2 + · · ·+ φ(en)en.

29We have shown previously that if T is linear, then this condition would be sufficient to show T is injective. However, we only
know that T is conjugate-linear, so we cannot directly apply this criterion.

30Note that even if T is conjugate-linear, the condition T (v) = 0 ⇒ v = 0 is sufficient to show that T is injective.
31Similarly, if T was linear, then injectivity would directly imply surjectivity because dimV = dimV ′ (see —).
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We will show that T (S(φ)) = φ, which implies that T is surjective. We know that

T (S(φ)) = T (φ(e1)e1 + · · ·+ φ(en)en)

= φ(e1)T (e1) + · · ·+ φ(en)T (en).

Then, for any ei,

T (S(φ))(ei) = φ(e1)T (e1)(ei) + · · ·+ φ(en)T (en)(ei)

= φ(e1)⟨ei, e1⟩+ · · ·+ φ(en)⟨ei, en⟩
= φ(ei)⟨ei, ei⟩
= φ(ei).

Since T (S(φ)) and φ agree on all basis vectors, it follows that T (S(φ)) = φ, as desired.32 Therefore, T is both
injective and surjective, so T is bijective.

An consequence of this result is that given any linear functional φ, then φ(u) = ⟨u, v⟩ for

v = φ(e1)e1 + · · ·+ φ(en)en

for any orthonormal basis e1, . . . , en. Furthermore, the Riesz Representation Theorem tells us that v is unique,
so the right side of the above equation is the same regardless of which orthonormal basis e1, . . . , en is chosen.

16.5 Orthogonal Projection
Now, we will shift our discussion to the notion of orthogonal projection. As we will see later, orthogonal
projection actually has significant applications to minimization problems.

To visualize orthogonal projection, suppose we have a 2D plane that is a subspace of R3. Let v be a vector in
R3. We wish to find a vector u such that u is in the plane and the distance between u and v is minimized, where
dist(u, v) = ||u− v||.

v

u

U

||u− v||

Intuitively, the distance would be minimized when u − v is perpendicular to the plane. This motivates the
following definition.

Definition 16.5 (orthogonal complement, U⊥)
Suppose U is a subspace of V. The orthogonal complement of U, denoted U⊥, is defined by

U⊥ = {v ∈ V |v⊥u for all u ∈ U}.

From this definition, we can deduce the following basic properties of U⊥ :

• U⊥ is a subspace,

• {0}⊥ = V,

• V ⊥ = {0}.

Furthermore, we also have the following lemma.
32While not needed for the proof, it is also true that S(T (v)) = v for all v ∈ V, so S is the inverse of T.
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Lemma 16.6
Suppose U is a finite-dimensional subspace of V. Then,

V = U ⊕ U⊥.

Proof. First, we will show that U ∪ U⊥ = {0}. Let u ∈ U ∪ U⊥. It follows that u is orthogonal to itself, so
⟨u, u⟩ = 0. By definiteness, it follows that u = 0.

Now, we will show that V = U + U⊥. Let e1, . . . , em be an orthonormal basis of U. We wish to show that for
any v ∈ V, there exists some w ∈ U⊥ such that

v = c1e1 + · · ·+ cmem + w.

Then, note that
⟨v, ei⟩ = c1⟨e1, ei⟩+ · · ·+ cm⟨em, ei⟩+ ⟨w, ei⟩ = ci.

It follows that
w = v − ⟨v, e1⟩e1 − · · · − ⟨v, em⟩em.

It remains to check that w ∈ U⊥, which is equivalent to showing that ⟨w, ei⟩ for all i = 1, . . . ,m. Then,

⟨w, ei⟩ =
〈
v − ⟨v, e1⟩e1 − · · · − ⟨v, em⟩em, ei

〉
= ⟨v, ei⟩ − ⟨v, ei⟩⟨ei, ei⟩
= 0,

as desired. Therefore, V = U ⊕ U⊥.

Now, we can formally define orthogonal projection.

Definition 16.7 (orthogonal projection, PU )
Suppose U is a finite-dimensional subspace of V. The orthogonal projection of V onto U is the linear
map PU : V → U defined by the following: for v ∈ V, write v = u + w, where u ∈ U and w ∈ U⊥. Then,
PU (v) = u.

A consequence of the proof of Lemma 16.6 is that if e1, . . . , em is an orthonormal basis of U, then

PU (v) = ⟨v, e1⟩e1 + · · ·+ ⟨v, em⟩em.

In the next lecture, we will discuss applications of orthogonal projections.
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17 Orthogonal Projection (continued) and Self-Adjoint Operators

17.1 Review
Last time, we ended with a discussion on orthogonal projection. We defined the orthogonal complement (see
Definition 16.5), denoted U⊥, and proved that

V = U ⊕ U⊥.

We then defined the notion of orthogonal projection (see 16.7), denoted PU , where PU (v) can be seen as taking
the "U -part" of v. In particular, we showed that if given any orthonormal basis e1, . . . , en of U, then

PU (v) = ⟨v, e1⟩e1 + · · ·+ ⟨v, em⟩em.

17.2 Applications of Orthogonal Projection
As we will see, PU solves the following optimization problem.

Proposition 17.1
Suppose U is a finite-dimensional subspace of V and v ∈ V. Then, PU (v) has the shortest distance to v
among all u ∈ U. In mathematical terms,

||v − u|| ≥ ||v − PU (v)||

for all u ∈ U and equality occurs if and only if u = PU (v).

Proof. We can express v as
v = PU (v) + w,

where w ∈ U⊥. For any u ∈ U,

||v − u||2 = ||(PU (v)− u) + w||2

= ||PU (v)− u||2 + ||w||2

≥ ||w||2,

where the second equality follows from the Pythagorean Theorem (see Lemma 14.14), which applies because
PU (v)− u ∈ U and w ∈ U⊥. Since w = v − PU (v), it follows that ||v − u|| ≥ ||v − PU (v)||, as desired. Equality
holds when ||PU (v)− u|| = 0, which occurs if and only if w = PU (v).

Example 17.2
Suppose U is a plane in R3.

v

u

U

||u− v||

Then, the shortest distance from v to any u ∈ U is uniquely determined by setting u to be the orthogonal
projection of v onto the plane. We can see that any other vector u would have a larger distance to v by
drawing a right triangle, where ||v − u|| is strictly larger than ||v − PU (v)||.

Orthogonal projections can also be used to create polynomial approximations of arbitrary functions.
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Example 17.3
Suppose we wish to find a polynomial of degree at most 5 that approximates sinx as well as possible on
the interval [−π, π].a

Let f, g be two continuous functions on the interval [−π, π]. We define the distance between f and g as

(
dist(f, g)

)2
=

∫ π

−π

|f(x)− g(x)|2 dx.

b It follows that
||f ||2 =

∫ π

−π

|f(x)|2 dx.

This definition of norm comes from the inner product

⟨f, g⟩ =
∫ π

−π

f(x)g(x) dx

over all continuous functions on [−π, π].

Let V = C([−π, π]) denote the inner product space of all continuous functions on [−π, π] with inner product
defined as above and U = P5(C). It is clear that U is a subspace of C([−π, π]). Now, our approximation
problem can be reformulated to finding u ∈ U such that ||v − u|| is minimized, where v = sin(x).

By Proposition 17.1, the solution to this problem is u = PU (v). Apply the Gram-Schmidt Procedure on the
basis 1, x, x2, x3, x4, x5 of U to produce an orthonormal basis e1, e2, e3, e4, e5, e6 of U. Then, it follows that

PU (v) = ⟨v, e1⟩e1 + · · ·+ ⟨v, e6⟩e6.

Performing this computation results in

u = 0.987862x− 0.155271x3 + 0.00564312x5,

which is shown in the textbook to be a much more accurate approximation of sinx than the Taylor
polynomial.

aNote that we must restrict ourselves to the interval [−π, π] because a polynomial must go to ±∞ at the extremes, which
would give a bad approximation of sinx.

bThis definition of distance is known as L2-distance.

Note that C([−π, π]) in the above example is an infinite-dimensional vector space. However, we are projecting
onto a finite-dimensional vector space U, so all of our theorems still hold.

17.3 Adjoints
We will now shift our discussion to adjoints of linear maps.

Definition 17.4 (adjoint)
Suppose V,W are inner product spaces and T : V → W is a linear map. Then, the adjoint of T is the
map T ∗ :W → V such that

⟨Tv,w⟩ = ⟨v, T ∗w⟩

for every v ∈ V and w ∈W.

Note that the above definition doesn’t directly tell you what T ∗w is for any w ∈ W. Instead, it tells you that
⟨v, T ∗w⟩ is determined by T for all v ∈ V, which in turn determines T ∗w.

To see why this is the case, let e1, . . . , en and f1, . . . , fm be orthonormal bases of V and W, respectively. Let
M(T, (e1), (fj)) = (Aji), so

T (ei) = A1if1 +A2if2 + · · ·+Amifm.

100



Lecture 17: Orthogonal Projection (continued) and Self-Adjoint Operators

It follows that

⟨ei, T ∗fj⟩ = ⟨Tei, fj⟩
= ⟨A1if1 +A2if2 + · · ·+Amifm, fj⟩
= Aji,

which implies that
T ∗fj = Aj1e1 +Aj2e2 + · · ·+Ajnen.

The same logic as above can be expanded to show that T ∗w is uniquely determined for any vector w =
c1f1 + · · ·+ cmfm ∈W. Thus, T ∗ is well-defined.

Theorem 17.5
T ∗ is a linear map.

Proof. First, we will show that T ∗ is additive. We wish to show that T ∗(w1 + w2)− T ∗(w1)− T ∗(w2) = 0 for
arbitrary w1, w2 ∈W. For any v ∈ V,

⟨v, T ∗(w1 + w2)− T ∗(w1)− T ∗(w2)⟩ = ⟨v, T ∗(w1 + w2)⟩ − ⟨v, T ∗(w1)⟩ − ⟨v, T ∗(w2)⟩
= ⟨Tv,w1 + w2⟩ − ⟨Tv,w1⟩ − ⟨Tv,w2⟩
= 0.

Since v is arbitrary, it follows that T ∗(w1 + w2)− T ∗(w1)− T ∗(w2) = 0. Therefore, T ∗ is additive.

Next, we will show that T ∗ is homogeneous. We wish to show that T ∗(cw) − cT ∗(w). Then, using a similar
process to above,

⟨v, T ∗(cw)− cT ∗(w)⟩ = ⟨v, T ∗(cw)⟩ − ⟨v, cT ∗(w)⟩
= ⟨Tv, cw⟩ − c⟨v, T ∗w⟩
= c⟨Tv,w⟩ − c⟨Tv,w⟩
= 0,

so T ∗(cw)− cT ∗(w) = 0. Therefore, T ∗ is homogeneous, which implies that T ∗ is linear.

Since T ∗ is a linear map, we can represent T ∗ with a matrix. Furthermore, we showed earlier that T ∗fj =
Aj1e1 + · · ·+Ajnen, so

M(T ∗, (fj), (ei)) = (Aij).

Therefore, M(T ∗) is the conjugate transpose of M(T ), which is obtained by taking the transpose and taking
the conjugate of each entry.

Example 17.6
Consider the identity map. It follows that

⟨id(v), w⟩ = ⟨v, w⟩ = ⟨v, id∗(w)⟩,

so id∗ = id.

More generally, consider the scalar operator c · id. Then,

⟨(c · id)(v), w⟩ = c⟨v, w⟩ = ⟨v, cw⟩ = ⟨v, (c · id)∗(w)⟩,

so (c · id)∗ = c · id.

Additionally, these are some basic properties of adjoints.
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Fact 17.7 (Properties of adjoints)

1. (T1 + T2)
∗ = T ∗

1 + T ∗
2

2. (cT )∗ = cT ∗

3. (TS)∗ = S∗T ∗

17.4 Self-Adjoint Operators
Now, we will shift our discussion to operators on inner product spaces. First, we will discuss the notion of
self-adjoint operators.

Definition 17.8 (self-adjoint)
An operator T ∈ L(V ) is self-adjoint if T = T ∗. In other words, T is self-adjoint if and only if

⟨Tv,w⟩ = ⟨v, Tw⟩

for all v, w ∈ V.

Suppose e1, . . . , en is an orthonormal basis of complex vector space V. Since M(T ∗) is the conjugate transpose
of M(T ) under any orthonormal basis, it follows that T is self-adjoint if and only if M(T ) is invariant under
conjugate transpose.33 These matrices take the form

A11 Aij

A22

. . .
Aji Ann

 ,

where Aij = Aji. In particular, this implies that Aii = Aii, so the entries on the diagonal must be real.

If V is a real vector space, then T is self-adjoint if and only if M(T ) is a symmetric matrix.

By definition, every eigenvalue is real over real vector spaces. Thus, the next result is only interesting over
complex vector spaces.

Proposition 17.9
All eigenvalues of a self-adjoint operator are real.

Proof. Let λ be an eigenvalue of T with corresponding eigenvector v. Then,

⟨Tv, v⟩ = ⟨λv, v⟩ = λ||v||2.

Also,
⟨Tv, v⟩ = ⟨v, Tv⟩ = ⟨v, λv⟩ = λ||v||2.

It follows that λ||v||2 = λ||v||2, which implies that λ = λ since v is nonzero. Thus, λ is real.

Now, we will discuss an interesting way to think about self-adjoint operators. For any T ∈ L(V ), we can consider
the function φ defined by

φ(u, v) = ⟨Tu, v⟩.

Suppose we wish φ satisfied the property an inner product; for instance, it is easy to show that φ is linear in
the first variable and conjugate-linear in the second variable.

When does φ satisfy conjugate symmetry? We can see that

φ(v, u) = ⟨Tv, u⟩ = ⟨u, Tv⟩.
33Such matrices are known as Hermitian matrices, which were introduced in the previous lecture.
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It follows that
φ(u, v) = ⟨Tv, u⟩ and φ(v, u) = ⟨u, Tv⟩,

so φ satisfies conjugate symmetry if and only if T is self-adjoint.

Even with the condition that T is self-adjoint, note that φ is still not necessarily an inner product, since it may
not satisfy positivity or definiteness.34

We will use the above definition of the function φ for our next result.

Proposition 17.10
Suppose T ∈ L(V ) is self-adjoint. If ⟨Tv, v⟩ = 0 for all v ∈ V, then T = 0.

Proof. Let φ(u, v) = ⟨Tu, v⟩. We know that

• φ is linear in the first variable and conjugate-linear in the second variable,

• φ has conjugate-symmetry,

• φ(v, v) = 0.

Then, it follows that

φ(u+ v, u+ v) = φ(u, u) + φ(u, v) + φ(v, u) + φ(v, v)

= φ(u, v) + φ(v, u)

= φ(u, v) + φ(u, v)

= 2Re(φ(u, v))

= 0,

so Re(φ(u, v)) = 0 for all u, v ∈ V. Similarly,

φ(u+ iv, u+ iv) = φ(u, u) + φ(u, iv) + φ(iv, u) + φ(v, iv)

= φ(u, iv) + φ(iv, u)

= i(φ(v, u)− φ(u, v))

= i(φ(u, v)− φ(u, v))

= 2 Im(φ(u, v))

= 0,

so Im(φ(u, v)) = 0 for all u, v ∈ V. Thus, φ = 0.

Now, for any u ∈ V,
φ(u, Tu) = ⟨Tu, Tu⟩ = 0,

which implies Tu = 0 by definiteness. Therefore, T = 0.

34Later, we will introduce the notion of positive operators. If T is a positive operator, then would make φ satisfy positivity.
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18 The Spectral Theorem

18.1 Review
Last time, we introduced adjoints and ended with a discussion on self-adjoint operators (see Definition 17.8). We
also proved some important properties of self-adjoint operators, in particular that all eigenvalues of a self-adjoint
operator are real (see Proposition 17.9).

18.2 Self-Adjoint Operators (continued)
First, we will discuss some consequences of Proposition 17.9.

Example 18.1
Suppose V = Cn and e1, . . . , en is the standard basis. Consider T ∈ L(V ) such that

M(T ) =


a1 0

a2
. . .

0 an

 .

Thus, Tei = aiei for all i = 1, 2, . . . , n.

Guiding Question
IF T is self-adjoint, then what are the possible values of a1, a2, . . . , an?

Answer. It is clear that a1, . . . , an are eigenvalues of T. Thus, for T to be self-adjoint, a1, . . . , an must all
be real.

Now, we will prove the converse of the above statement.

Proposition 18.2
Suppose V and T ∈ L(V ) is defined as in Example 18.1. If all ai are real, then T is self-adjoint.

Proof. Let e1, . . . , en be the standard basis of V = Cn. First, we will show that ⟨Tei, ej⟩ = ⟨ei, T ej⟩. We find
that

⟨Tei, ej⟩ = ⟨aiei, ej⟩ =

{
0 i ̸= j,

ai i = j.

and

⟨ei, T ej⟩ = ⟨ei, ajej⟩ =

{
0 i ̸= j,

aj i = j.

Since ai = aj for i = j, it follows that ⟨Tei, ej⟩ = ⟨ei, T ej⟩ for all pairs of basis vectors ei, ej . Then, by linearity
in the first variable and conjugate linearity in the second variable, it follows that ⟨Tu, v⟩ = ⟨u, Tv⟩ for any
u, v ∈ V. Thus, T is self-adjoint.

The next result is a more general statement of Proposition 18.2.

Proposition 18.3
Suppose V is a complex inner product space, e1, . . . , en is an orthonormal basis of V, and T ∈ L(V ) such
that

M(T, (e1, . . . , en)) =


a1 0

a2
. . .

0 an


for a1, . . . , an ∈ R. Then, T is self-adjoint.
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Proof. This proof is identical to the proof of Proposition 18.2.

Later in this lecture, we will prove the converse of Proposition 18.3; that is, if T is self-adjoint, then there exists
an orthonormal basis such that T is diagonal with real entries.

18.3 Real Spectral Theorem
We will first prove a simpler version of the above statement over real vector spaces. To do this, we will need
the following two lemmas.

Note that by Theorem 13.1, any T ∈ L(V ) for a complex vector space V has an eigenvalue. Thus, the next
result is only interesting for real vector spaces.

Lemma 18.4
Suppose V is a R-inner product space and T ∈ L(V ) is self-adjoint. Then, T has an eigenvalue.

Proof. We wish to find some λ ∈ R such that Null(T − λidV ) ̸= {0}. Let e1, . . . , en be an orthonormal basis of
V and let M(T ) = A with respect to this basis. It is equivalent to find some λ such that rank(A− λI) < n.

By the definition of M(T ), we know that Aij is the coefficient of the ei term of Tej ; in other words, Aij =
⟨Tej , ei⟩. Then,

Aij = ⟨Tej , ei⟩ = ⟨ej , T ei⟩ = ⟨Tei, ej⟩ = Aji,

so A is symmetric. Since A is also a real matrix, it follows that A is a Hermitian matrix.

Now, view A as the matrix of an operator S ∈ L(Cn). Since A is a Hermitian matrix, it follows that A is
equivalent to its conjugate transpose, so S is self-adjoint. Then, by Theorem 13.1, S must have some eigenvalue
λ. Since S is self-adjoint, it follows that λ is real.

Thus, since λ ∈ R is an eigenvalue of S, it follows that

Null(S − λidCn) ̸= {0}
=⇒ rank(A− λI) < n

=⇒Null(T − λidV ) ̸= {0},

so λ is an eigenvalue of T.

Although this lemma concerns an operator T in a real vector space, the proof relies on creating an analo-
gous operator S in some complex vector space such that M(T ) = M(S) = A. This technique is known as
complexification, which we will not cover in detail in this course.

Lemma 18.5
Suppose T ∈ L(V ) is self-adjoint and U is a T -invariant subspace of V. Then,

1. U⊥ is T -invariant,

2. T |U is self-adjoint,

3. T |U⊥ is self-adjoint.

Proof. To prove (1), let v ∈ U⊥ and u ∈ U. Then,

⟨Tv, u⟩ = ⟨v, Tu⟩ = 0,

where the second equality holds because v ∈ U⊥ and U is T -invariant, so Tu ∈ U. Because u is an arbitrary
vector in U, it follows that Tv ∈ U⊥, so U⊥ is T -invariant.

To prove (2), for any u, v ∈ U,

⟨(TUu, v⟩ = ⟨Tu, v⟩ = ⟨u, Tv⟩ = ⟨u, TUv⟩,

so TU is self-adjoint.

To prove (3), replace U with U⊥ in the proof of (2).
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Now, we are ready to prove the Real Spectral Theorem.

Theorem 18.6 (Real Spectral Theorem)
Suppose V is a finite-dimensional R-inner product space and T ∈ L(V ). Then, the following are equivalent:

1. T is self-adjoint,

2. T has a diagonal matrix under some orthonormal basis of V.

Proof. By Proposition 18.3, (2) implies (1).

Now, we will show that (1) implies (2) by induction on dimV. Let n = dimV. If n = 1, then T has a diagonal
matrix since every 1×1 matrix is diagonal.

Now, assume n > 1. By Lemma 18.4, T has an eigenvalue λ1. Let e1 be a corresponding eigenvector of λ1
such that ||e1|| = 1 (which can be done by choosing any eigenvector and dividing it by its norm). Then, let
U = span(e1). It is clear that U is T -invariant. By Lemma 18.5, U⊥ is T -invariant with dimension n− 1 and
T |U⊥ is self-adjoint.

By the inductive hypothesis, T |U⊥ has a diagonal matrix for some orthonormal basis e2, . . . , en of U⊥. In other
words,

Te2 = λ2e2

...
Ten = λnen.

Additionally, Te1 = λ1e1. Therefore, T is diagonal with respect to the orthonormal basis e1, . . . , en of V.

18.4 Normal Operators and Complex Spectral Theorem
Now, we will extend the Spectral Theorem to complex vector spaces.

Theorem 18.7 (Complex Spectral Theorem for self-adjoint operators)
Suppose V is a finite-dimensional C-inner product space and T ∈ L(V ). Then, the following are equivalent:

1. T is self-adjoint,

2. T has a diagonal matrix with real entries under some orthonormal basis of V.

Proof. The proof is identical to the proof of the Real Spectral Theorem, except we can apply Theorem 13.1
instead of Lemma 18.4.

Now, suppose V is a complex vector space and T ∈ L(V ) has a diagonal matrix with diagonal entries a1, . . . , an
for some orthonormal basis e1, . . . , en of V, except a1, . . . , an are not necessarily real. Then, since M(T ∗) is the
conjugate transpose of M(T ), it follows that

Tei = aiei and T ∗ei = aiei.

In particular,
TT ∗ei = aiaiei = T ∗Tei,

so TT ∗ = T ∗T.

This motivates the following definition.

Definition 18.8 (normal)
An operator T ∈ L(V ) is normal if

TT ∗ = T ∗T.

Consider the following examples of normal operators.

106



Lecture 18: The Spectral Theorem

Example 18.9
Suppose T ∈ L(C2) such that

M(T ) =

(
2 3
−3 2

)
with respect to the standard basis. It follows that

M(T ∗) =

(
2 −3
3 2

)
.

Since M(T ) ̸= M(T ∗), it follows that T is not self-adjoint. However, we can compute

M(T )M(T ∗) =

(
13 0
0 13

)
= M(T ∗)M(T ).

Thus, TT ∗ = T ∗T, so T is normal.

Example 18.10
Suppose T ∈ L(V ) is self-adjoint. Let c ∈ C. We will show that cT is normal.

We know that
(cT )∗ = cT ∗ = cT.

Then,
(cT )(cT )∗ = cT · cT = |c|2T 2 = cT · cT = (cT )∗(cT ).

Thus, cT is normal.

Additionally, cT is self-adjoint if and only if cT = cT, which occurs when c is real.

Before we prove the full statement of the Complex Spectral Theorem, we will need the following two lemmas.

Lemma 18.11
Suppose V is a C-inner product space and T ∈ L(V ) is normal. Then, there exists some nonzero v ∈ V
such that v is an eigenvector for both T and T ∗.

Proof. By Theorem 13.1, there exists some λ which is an eigenvalue of T. We will show that E(λ, T ) is T ∗-
invariant.

Let v ∈ E(λ, T ). It follows that Tv = λv. Then,

T (T ∗v) = T ∗(Tv) = T ∗(λv) = λ(T ∗v),

where the first equality holds because T is normal. Thus, T ∗v ∈ E(λ, T ), so E(λ, T ) is T ∗-invariant.

Now, choose any eigenvector v of T ∗|E(λ,T ), which must exist by Theorem 13.1. It follows that v ∈ E(λ, T ), so
v is also an eigenvector of T.35

Lemma 18.12
Suppose V is a C-inner product space, T ∈ L(V ) and U is a T -invariant subspace of V. Then, U⊥ is
T ∗-invariant.

Proof. Suppose u ∈ U v ∈ U⊥. Then,
⟨u, T ∗v⟩ = ⟨Tu, v⟩ = 0,

since Tu ∈ U and v ∈ U⊥. Thus, T ∗v ∈ U⊥, so U⊥ is T ∗-invariant.
35It is actually the case that if v has corresponding eigenvalue λ for T, then v has corresponding eigenvalue λ for T ∗. This

property is not needed for our discussion, so we did not prove it here.

107



Lecture 18: The Spectral Theorem

Now, we are ready to prove the full statement of the Complex Spectral Theorem.

Theorem 18.13 (Complex Spectral Theorem for normal operators)
Suppose V is a finite-dimensional C-inner product space and T ∈ L(V ). Then, the following are equivalent:

1. T is normal,

2. T has a diagonal matrix under some orthonormal basis of V.

Proof. First, we will show that (2) implies (1). Since T ∗ is the conjugate transpose of T, it follows that T ∗ is
also diagonal. Any two diagonal matrices commute, so T commutes with T ∗. Thus, T is normal.

Now, we will show that (1) implies (2) by induction on dimV. Let n = dimV. If n = 1, then T has a diagonal
matrix since every 1×1 matrix is diagonal.

Then, assume n > 1. By Lemma 18.11, there exists some vector e1 such that ||e1|| = 1 and is an eigenvector
for both T and T ∗. Let U = span(e1). It follows that U is both T -invariant and T ∗-invariant. By Lemma 18.12,
U⊥ is T ∗-invariant. Furthermore, since U is also T ∗-invariant, it follows that U⊥ is also T -invariant because
(T ∗)∗ = T. Additionally,

(T |U⊥)(T |U⊥)∗ = T |U⊥(T ∗)|U⊥ = (T ∗)|U⊥T |U⊥ = (T |U⊥)∗(T |U⊥),

so T |U⊥ is normal.

By the inductive hypothesis, there exists an orthonormal basis e2, . . . , en of U⊥ such that the matrix of T |U⊥

is diagonal. Thus, e1, . . . , en is an orthonormal basis of V such that T is diagonal.

The above result is quite fascinating: the definition of normal operators doesn’t say anything about the
eigenvalues or matrix of T. But, from the simple fact that T commutes with T ∗, we can deduce that T is
diagonalizable.

18.5 Normal Operators (continued)
Now, we will use the Complex Spectral Theorem to deduce some properties of normal operators.

Theorem 18.14 (Properties of normal operators)
Suppose T ∈ L(V ) is normal. Then,

1. ||Tv|| = ||T ∗v|| for all v ∈ V,

2. E(λ, T ) = E(λ, T ∗) for all λ ∈ C,

3. E(λ, T )⊥E(µ, T ) for λ, µ ∈ C and λ ̸= µ.

Proof. To prove (1), by the Spectral Theorem, there exists some orthonormal basis e1, . . . , en such that T
is diagonal. It follows that Tei = λiei and T ∗ei = λiei because T ∗ is the conjugate tranpose of T. Let
v = a1e1 + · · ·+ anen ∈ V. Then,

||Tv||2 = ||a1λ1e1 + · · ·+ anλnen||
= |a1λ1|2 + · · · |anλn|2

= |a1λ1|2 + · · · |anλn|2

= ||a1λ1e1 + · · ·+ anλnen||
= ||T ∗v||2,

as desired.36

To prove (2), consider an orthonormal basis e1, . . . , en such that T is diagonal. It follows that

E(λ, T ) = span(ei|λi = λ).

36This statement is actually an if and only if statement; that is, T is normal if and only if ||Tv|| = ||T ∗v|| for all v ∈ V.
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Since T ∗ is the conjugate transpose of T, it follows that

E(λ, T ) = span(ei|λi = l) = span(ei|λi = λ),

so E(λ, T ) = E(λ, T ∗).

To prove (3), we know that

E(λ, T ) = span(ei|λi = λ) and E(µ, T ) = span(ej |λj = µ).

Because λ ̸= µ, there is no ei that is included in both E(λ, T ) and E(µ, T ). Finally, since e1, . . . , en is an
orthonormal list, it follows that E(λ, T )⊥E(µ, T ).
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19 Isometries and Singular Value Decomposition

19.1 Review
Last time, we discussed the Real and Complex Spectral Theorems (recall Theorem 18.6 and Theorem 18.13).

19.2 Isometries
In this section, we will consider linear maps that preserve norms.

Definition 19.1 (isometry)
Suppose V and W are inner product spaces. A linear map S : V →W is an isometric embedding if

||Sv|| = ||v||

for all v ∈ V. If S is also surjective, then S is an isometry.

Fact 19.2
Suppose S is an isometric embedding, Then, S is injective.

Proof. A linear map is injective if Sv = 0 implies v = 0. Let v ∈ V such that Sv = 0. Then,

||v|| = ||Sv|| = 0,

so v = 0. Therefore, S is injective.

Thus, an isometry S is an isomorphism because it is both injective and surjective. In particular, an isometric
embedding S ∈ L(V,W ) is an isometry when V and W have the same dimension.
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Example 19.3
Suppose V = R2 with the standard inner product and W = R2 with inner product defined by

⟨e′1, e′1⟩ = 2,

⟨e′1, e′2⟩ = 0,

⟨e′2, e′2⟩ =
1

2
,

for a basis e′1, e′2 of R2.

It follows that
||(x, y)||V =

√
x2 + y2

and

||(x, y)||W =
√
⟨xe′1 + ye′2, xe

′
1 + ye′2⟩

=
√
x2⟨e′1, e′1⟩+ 2xy⟨e′1, e′2⟩+ y2⟨e′2, e′2⟩

=

√
2x2 +

1

2
y2.

Now, we wish to find an isometry S : V →W. Geometrically, we can visualize the following diagram for V
and W :

e1

e2

V

e′1

e′2

W

It is clear that setting Se1 = e′1 would not be an isometry because ||e1||V = 1 and ||e′1||W =
√
2. However,

this implies that setting Se1 = 1√
2
e′1 does conserve norms. By similar logic, setting Se2 =

√
2e′2 also

conserves norms. Furthermore, ⟨Se1, Se2⟩ = ⟨ 1√
2e′1
,
√
2e′2⟩ = 0. Then, for any v = xe1 + ye2 ∈ V,

||Sv||W = || 1√
2
xe′1 +

√
2ye′2||

=
√

2( 1√
2
x)2 + 1

2 (
√
2y)2

=
√
x2 + y2

= ||v||V .

Therefore, S is an isometry.

This example is one out of many possible isometries from V to W. For instance, it is easy to verify by the
same logic as above that the linear map defined by

Se1 =
√
2e′2 and Se2 = 1√

2
e′1

is an isometry.

Now, we will discuss some properties of isometries.
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Theorem 19.4 (Properties of isometries)
Suppose S ∈ L(V,W ) is an isometry. Then,

1. ⟨Su, Sv⟩ = ⟨u, v⟩ for all u, v ∈ V,

2. S∗S = idV

3. if e1, . . . , en is an orthonormal basis of V, then Se1, . . . , Sen is an orthonormal list of W.

Additionally, for arbitrary S ∈ L(V,W ),

4. if e1, . . . , en is an orthonormal basis of V and Se1, . . . , Sen is an orthonormal list of W, then S is an
isometry.

Proof. To prove (1), we know that ||S(u+ v)|| = ||u+ v||. Then, we can compute

||S(u+ v)||2 = ⟨Su+ Sv, Su+ Sv⟩
= ⟨Su, Su⟩+ ⟨Su, Sv⟩+ ⟨Sv, Su⟩+ ⟨Sv, Sv⟩
= ||Su||2 + ||Sv||2 + 2Re⟨Su, Sv⟩.

Similarly, we compute

||u+ v||2 = ⟨u+ v, u+ v⟩
= ⟨u, u⟩+ ⟨u, v⟩+ ⟨v, u⟩+ ⟨v, v⟩
= ||u||2 + ||v||2 + 2Re⟨u, v⟩.

It follows that
||Su||2 + ||Sv||2 + 2Re⟨Su, Sv⟩ = ||u||2 + ||v||2 + 2Re⟨u, v⟩.

Since S is an isometry, we know that ||Su|| = ||u|| and ||Sv|| = ||v||. Therefore, Re⟨Su, Sv⟩ = Re⟨u, v⟩ for all
u, v ∈ V.

Then, replacing u with iu in the above argument gives us

Re(i⟨Su, Sv⟩ = Re(i⟨u, v⟩),

which implies that Im⟨Su, Sv⟩ = Im⟨u, v⟩. Thus, ⟨Su, Sv⟩ = ⟨u, v⟩ for all u, v ∈ V.

To prove (2), we know that
⟨u, S∗Sv⟩ = ⟨Su, Sv⟩ = ⟨u, v⟩,

where the second equality follows from (1). It follows that ⟨u, S∗S − v⟩ = 0 for all u, v ∈ V. This implies that
S∗S−v is orthogonal to all vectors in V ; in particular, it must be orthogonal to itself, so S∗S−v = 0. Therefore,
S∗S = idV .

To prove (3), we know that ⟨Sei, Sej⟩ = ⟨ei, ej⟩ by (1). Since e1, . . . , en is orthonormal, it follows that

⟨Sei, Sej⟩ =

{
1 if i = j,

0 otherwise,

so Se1, . . . , Sen is orthonormal.

To prove (4), suppose v = x1e1 + · · ·+ xnen ∈ V. Then,

||v||2 = ||x1e1||2 + · · ·+ ||xnen||2

= |x1|2 + · · · |xn|2

and

||Sv||2 = ||x1Se1 + · · ·xnSen||2

= ||x1Se1||2 + · · ·+ ||xnSen||2

= |x1|2 + · · · |xn|2.

Thus, ||Sv|| = ||v||, so S is an isometry.
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Properties (3) and (4) imply that S ∈ L(V,W ) sending an orthonormal basis of V to an orthonormal list of W
is equivalent to S being an isometry. In fact, the first two properties are also equivalent to S being an isometry,
the details of which are in the textbook.

19.3 Singular Values
Now, let S ∈ L(V,W ) be any linear map such that dimV ≤ dimW.

Guiding Question
Can we find orthonormal bases e1, . . . , en of V and f1, . . . , fm of W such that

S(ei) = aifi

for i = 1, 2, . . . , n?

In other words, we want

M(S, (ei), (fj)) =


a1

. . .
an

0 · · · 0

 .

We will spend this section showing that finding such orthonormal is always possible.

Note that a1, . . . , an are not eigenvalues of S, since e1, . . . , en and f1, . . . , fm are different bases. Instead, we
call a1, . . . , an singular values of S. We will show that singular values only depend on S; namely, they are
independent of the chosen orthonormal bases of V and W.

First, we will further explore a1, . . . , an. By definition, S(ei) = aifi. Then, the matrix of S∗ ∈ L(W,V ) is the
conjugate transpose of S,

M(S∗, (fj), (ei)) =

a1 0
. . .

...
an 0

 .

Thus,

S∗(fj) =

{
ajej for 1 ≤ j ≤ n,

0 for j > n.

Now, note that S∗S ∈ L(V ). Then,

S∗S(ei) = S∗(aifi) = aiaiei = |ai|2ei.

Therefore, |ai|2 are the eigenvalues of S∗S with corresponding eigenvectors ei. Since the eigenvalues of S∗S
is independent of the chosen basis of V, it follows that |ai| is intrinsic to S. In conclusion, the singular values
|a1|, . . . , |an| are the square roots of the eigenvalues of S∗S.37

Definition 19.5 (singular values)
Suppose S ∈ L(V ). The singular values of S are the square roots of the eigenvalues of S∗S.

Note that we reached the above definition by assuming that there exist appropriate orthonormal bases e1, . . . , en
and f1, . . . , fm. Furthermore, this definition assumes that the eigenvalues of S∗S are all nonnegative real numbers,
which we will now show must be the case.

Fact 19.6
All eigenvalues of S∗S are nonnegative.

37Recall earlier we defined a1, . . . , an as the singular values of S, not |a1|, . . . , |an|. However, we will later show that the eigenvalues
of S∗S must be real and nonnegative, so ai = |ai|.
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Proof. Let T = S∗S. Then,
T ∗ = (S∗S)∗ = S∗(S∗)∗ = S∗S = T,

so T is self-adjoint. By the Spectral Theorem, T is diagonalizable under some orthonormal basis e1, . . . , en.
Thus, Tei = λiei for i = 1, 2, . . . , n. Then,

⟨ei, S∗Sei⟩ = ⟨Sei, Sei⟩ = ||Sei||2 ≥ 0

and
⟨ei, S∗Sei⟩ = ⟨ei, λei⟩ = λi.

Therefore, λi ≥ 0, as desired.

Finally, we will answer the Guiding Question posed at the start of this section.

Theorem 19.7
Suppose S ∈ L(V,W ) and dimV ≤ dimW. Then, there exists some orthonormal bases e1, . . . , en of V and
f1, . . . , fm of W such that

S(ei) = aifi

for 1 ≤ i ≤ n and ai are the singular values of S.

Singular Value Decomposition. We will give a simplified version of the proof, where we assume that S is injective.
The details of the general proof is in the textbook.

Suppose S∗Sv = 0. Then, ⟨Sv, Sv⟩ = ⟨v, S∗Sv⟩ = 0, which implies Sv = 0. Since S is injective, it follows that
v = 0. Therefore, S∗S is injective.

Furthermore, we proved earlier that S∗S is self-adjoint, so S∗S is diagonalizable under some orthonormal basis
e1, . . . , en of V. Thus,

S∗S(ei) = λiei

where λi > 0, because 19.6 and λ ̸= 0 because S is injective. By definition, the singular values of S are ai =
√
λi.

Now, let fi =
S(ei)
ai

for i = 1, 2, . . . , n. Furthermore,

⟨fi, fj⟩ = ⟨S(ei)
ai

,
S(ej)
aj

⟩

=
1

aiaj
⟨S(ei), S(ej)⟩

=
1

aiaj
⟨ei, S∗Sej⟩

=
λj
aiaj

⟨ei, ej⟩

=

{
1 if i = j,

0 otherwise,

so f1, . . . , fn is an orthonormal list. Finally, extending f1, . . . , fn to an orthonormal basis gives us the desired
orthonormal bases.

19.4 Applications of Singular Values
Now, we will discuss some real-world applications of singular values.

Suppose we wish to study the relationship height and life span. We would obtain a scatter plot similar to the
following, where the data is normalized such that the data is centered around 0. We wish to project this data
onto a line such that the characteristics of the data is preserved as much as possible.
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height

life span

Then, the direction of the "best projection" is given by an eigenvector of S∗S, where S : R2 → Rn. The inner
product space R2 consists of vectors representing the ordered pairs (height, life span) and the inner product
space Rn consists of vectors representing each data point in the plot, where n is the total number of data points.

We can compute that the matrix of S∗S is a symmetric matrix such that

M(S∗S) =

( ∑
(height)2

∑
(height · life span)∑

(height · life span)
∑

(life span)2

)
.

The larger the magnitude of
∑

(height · life span), the stronger the relationship between the two variables. Thus,
it can be deduced that direction of the "best projection" is given by the eigenvector corresponding to the largest
eigenvalue of S∗S,
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20 Polar Decomposition, Generalized Eigenspaces, and Nilpotent Op-
erators

20.1 Review
Recall the properties of the various classes of operators that we have discussed over the past few lectures:

• Self-adjoint operators: T = T ∗ (see Definition 17.8),

• Normal operators: T ∗T = TT ∗ (see Definition 18.8),

• Isometries: T ∗T = I (see Definition 19.1 and Theorem 19.4).

20.2 Positive Operators
Before we continue, we must first introduce a new class of operators.

Definition 20.1 (Positive operators)
An operator T ∈ L(V ) is positive if T is self-adjoint and all eigenvalues of T are nonnegative.

We know that all self-adjoint operators have only real eigenvalues; thus, positive operators is a subset of
self-adjoint operators.

20.3 Relationship Between Operators and Complex Numbers
If T ∈ L(V ) is self-adjoint, then T and T ∗ must commute because T = T ∗, so T is also normal. Similarly, if T
is an isometry, then T ∗T = TT ∗ = I, so T is normal. Therefore, self-adjoint operators and isometries are both
subsets of normal operators. In other words, we have the relation

Isomtries ⊂ Normal ⊃ Self-adjoint ⊃ Positive.

Now, consider the case where dimV = 1, so each operator T can be represented by a 1×1 matrix, which is
essentially a number. In this scenario, a complex number z corresponds to an operator T, and z corresponds to
T ∗. Then, we can determine what each class of operators in L(V ) corresponds to in C:

• Normal operators: zz = zz holds for all z, so normal operators correspond to C,

• Self-adjoint operators: z = z holds for real z, so self-adjoint operators correspond to R,

• Positive operators: self-adjoint operators with nonnegative eigenvalues correspond to nonnegative real
numbers, or R≥0,

• Isometries: for any v ∈ V, it must be that ||v|| = ||z ·v||, which holds for all |z| = 1, so isometries correspond
to the unit circle in C.

Now, it follows that that our above relation about operators is parallel to the following relation about complex
numbers:

Unit circle ⊂ C ⊃ R ⊃ R≥0.

This is more than an analogy between L(V ) and C, but rather the special case of opeartors where dimV = 1.

Exercise 20.2
The unit circle and R only intersect at two points (1 and -1). Can you use this fact to find all operators
which are both isometries and self-adjoint?

20.4 Polar Decomposition
Note that every nonzero complex number z can be written uniquely as

z = z1r,

where |z1| = 1 and r > 0 (in particular, z1 = eiθ and r = |z|).
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In terms of operators, z1 corresponds to an isometry and r corresponds to a positive operator. Thus, for any
invertible38 operator T ∈ L(V ), we can guess that T can be written as the product of an isometry and a positive
operator. This leads us to the following result.

Theorem 20.3 (Polar decomposition)
Suppose V is an inner product space over C and T ∈ L(V ) is invertible. Then, there is a unique way of
expressing

T = SP,

where S ∈ L(V ) is an isometry and P ∈ L(V ) is positive.

Proof. We will find a formula for P. Since T = SP, taking the adjoint of both sides gives T ∗ = P ∗S∗. Multiplying
these two equations gives

T ∗T = P ∗S∗SP = P ∗P = P 2,

where the second equality holds because S is an isometry and the last equality holds because P is self-adjoint.

Since T ∗T is self-adjoint, the Spectral Theorem tells us that there is an orthonormal basis e1, . . . , en of V such
that T ∗T (ei) = λiei for λi ∈ R. In fact,

λi = λi = ⟨ei, λiei⟩ = ⟨ei, T ∗Tei⟩ = ⟨Tei, T ei⟩ ≥ 0,

so all λi are nonnegative. Thus, T ∗T is a positive operator. Now, let P (ei) =
√
λiei. It is clear that P 2 = T ∗T

and all
√
λi ≥ 0, so P is positive.

Since T is invertible, T ∗ is also invertible, so T ∗T is invertible. It follows that all λi are strictly positive, so all√
λi are also stricly positive, so P is invertible. Now, let S = TP−1. It remains to show that S is an isometry.

We know that
S∗ = (TP−1)∗ = (P−1)∗T ∗ = P−1T ∗,

where the last equality holds because P is self-adjoint, so P ∗ is also self-adjoint. Then,

S∗S = P−1T ∗TP−1 = P−1P 2P−1 = I,

so S is an isometry, as desired.

To prove uniqueness, we must show that P 2 = T ∗T uniquely defines P. In fact, it is proved in the textbook
that every positive operator has a unique square root, so P is unique.

The following result is a more general form of polar decomposition, which we will not prove.

Theorem 20.4 (General polar decomposition)
Suppose T ∈ L(V,W ) and dimV ≤ dimW. Then, there exists an isometric embedding S ∈ L(V,W ) such
that

T = S
√
T ∗T .

Note that T ∗T ∈ L(V ) is a positive operator, so
√
T ∗T is uniquely determined.

20.5 Generalized Eigenspaces
Now, we will shift our discussion from inner product spaces back to the general setting of vector spaces. For
the remainder of this chapter, we will focus our attention on complex vector spaces.

Recall that the eigenspaces of T ∈ L(V ) are defined by E(λ, T ) = Null(T − λI), and T is diagonalizable if and
only if V = E(λ1, T )⊕ · · · ⊕ E(λm, T ). However, we have seen that not all operators are diagonlizable.

38Note that z being nonzero in C corresponds to T being invertible in L(V ).
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Guiding Question
Suppose T ∈ L(V ). Even if T is not diagonalizable, can we still have a decomposition of V into a direct
sum of subspaces such that

V = ( )1 ⊕ · · · ⊕ ( )m,

where ( )i is a subspace related to λi?

Our goal is to show that the answer to the above question is yes.

Example 20.5
Suppose T ∈ L(V ) such that

M(T ) =

0 0 1
1 0 0
0 0 1

 .

First, we will find the eigenvalues of T. It helps to see that this matrix is block upper-triangular:

M(T ) =

 0 0 1
1 0 0
0 0 1

 .

It follows that U = span(e1, e2) is T -invariant and T/U ∈ L(V/U) has matrix 1 under e3, where the notation
e3 represents the projection of e3 onto V/U. Now, the eigenvalues of T are the union of the eigenvalues of
T |U and T/U.

First, T |U has matrix M(T |U ) =
(
0 0
1 0

)
, which has eigenvalues that satisfy the equation

det

(
λ 0
1 λ

)
= λ2 = 0,

so the set of eigenvalues of T |U is {0}. From M(T |U ), we can deduce that

Te1 = e2 and Te2 = 0.

Thus, e2 is an eigenvector of T, while e1 is not. However,

T 2e1 = T (Te1) = Te2 = 0.

Thus, while e1 is not an eigenvector of T, it is an eigenvector of T 2. This is a special case of a generalized
eigenspace, where

G(0, T ) = span(e1, e2)

such that every v ∈ G(0, T ) satisfies T 2v = 0. This can also be seen by the fact that

M((T |U )2) =
(
0 0
1 0

)2

=

(
0 0
0 0

)
,

so (T |U )2 = 0.

Now, since T/U has 1×1 matrix 1, it follows that T/U is the identity operator on V/U. Thus, the eigenvalues
of T/U are {1}. Therefore, the eigenvalues of T are {0, 1}.

If we compute the eigenvectors of T corresponding to eigenvalue 1, we find that there is a unique eigenvector
v1 (up to scalar multiplication). Thus, E(1, T ) = span(v1).

It follows that we can decompose V into

V = G(0, T )⊕ E(1, T )

because e1, e2, v1 are linearly independent and dimV = 3 = dimG(0, T ) + dimE(1, T ).
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We will soon see that G(1, T ) = E(1, T ) in the above example. Thus, we can guess that we can always decompose
V into a direct sum of generalized eigenspaces of T.

First, we must give a formal definition of generalized eigenspaces.

Definition 20.6 (generalized eigenspace)
Suppose T ∈ L(V ). The generalized eigenspace of T corresponding to λ is defined by

G(λ, T ) = {v ∈ V |(T − λI)iv = 0 for some i > 0}.

It is easy to verify that G(λ, T ) is a subspace. Furthermore, recall that the eigenspace of T corresponding to λ
is defined by

E(λ, T ) = {v ∈ V |(T − λI)v = 0}.
Thus, it is clear that E(λ, T ) ⊂ G(λ, T ).

In the definition above, note that there are no constraints on the value of i such that (T − λI)iv = 0. The next
result will give an upper bound on i.

Lemma 20.7
Suppose T ∈ L(V ) and v ∈ G(0, T ). Let n = dimV. Then, Tnv = 0.

Proof. Suppose v ∈ Null(T k). Then, T k+1v = T (T kv) = T (0) = 0, so v ∈ Null(T k+1). Thus, Null(T k) ⊂
Null(T k+1), which implies that

{0} ⊂ Null(T ) ⊂ Null(T 2) ⊂ · · · ⊂ Null(T k) ⊂ Null(T k+1) ⊂ · · · ⊂ V.

Now, note that Null(T ),Null(T 2), . . . ,Null(T i), . . . cannot keep growing infinitely, because each null space is a
subspace of the finite-dimensional vector space V. Let i be the smallest integer such that Null(T i) = Null(T i+1).
Suppose v ∈ Null(T i+2). Then,

T i+2v = T i+1(Tv) = 0,

so Tv ∈ Null(T i+1). Since Null(T i) = Null(T i+1), it follows that Tv ∈ Null(T i), so

T i(Tv) = T i+1v = 0.

Therefore, v ∈ Null(T i+1), so Null(T i+2) ⊂ Null(T i+1). Since we already know that Null(T i+i) ⊂ Null(T i+2),
it follows that Null(T i+i) = Null(T i+2). Using the same logic for higher powers of T, it follows that

Null(T i) = Null(T i+1) = Null(T i+2) = Null(T i+3) = · · · .

Thus, we have the relation

{0} ⊊ Null(T ) ⊊ Null(T 2) ⊊ · · · ⊊ Null(T i) = Null(T i+1) = Null(T i+2) = · · · ⊂ V.

This implies that
0 < dimNull(T ) < dimNull(T 2) < · · · < dimNull(T i),

so dimNull(T i) ≥ i. Furthermore, Null(T i) ⊂ V, so dimNull(T i) ≤ n. It follows that n ≥ i, so

Null(T i) = · · · = Null(Tn) = Null(Tn+1) = · · · .

Now, let v ∈ G(0, T ). By definition, there exists some j > 0 such that T jv = 0, so v ∈ Null(T j). If j < n, then
Null(T j) ⊂ Null(Tn). If j ≥ n, then Null(T j) = Null(Tn). In either scenario, it follows that v ∈ Null(Tn), so
Tnv = 0, as desired.

We can generalize the above result to all generalized eigenspaces.

Theorem 20.8
Suppose T ∈ L(V ) and v ∈ G(λ, T ). Let n = dimV. Then, (T − λI)nv = 0.

Proof. The proof is the same as Lemma 20.7 by replacing T with T − λI.
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20.6 Nilpotent Operators
Now, we will introduce nilpotent operators.

Definition 20.9 (nilpotent)
An operator T ∈ L(V ) is called nilpotent if G(0, T ) = V.

In other words, T is a nilpotent operator if for any v ∈ V, there exists some i > 0 such that T iv = 0.

Example 20.10
Suppose the matrix of T ∈ L(V ) is the strictly upper-triangular matrix

M(T ) =

0 ∗
. . .

0 0

 .

We will show that T is nilpotent.

The matrix of T implies that

Te1 = 0

Te2 ∈ span(e1)

Te3 ∈ span(e1, e2)

...
Ten ∈ span(e1, . . . , en−1).

This implies that Tv = T (c1e1 + · · · + cnen) ∈ span(e1, . . . , en−1), so Range(T ) ⊂ span(e1, . . . , en−1).
By similar logic, we see that Range(T 2) ⊂ span(e1, . . . , en−2). Continuing this pattern, we see that
Range(Tn−1) ⊂ span(e1), so Range(Tn) = {0}. Therefore, Tn = 0, so T is nilpotent.

The next result will further illuminate the properties of nilpotent operators.

Proposition 20.11
Suppose T ∈ L(V ). The following are equivalent:

1. T is nilpotent,

2. All eigenvalues of T are 0,

3. M(T ) is strictly upper-triangular under some basis of V.

Proof. First, we will show that (1) implies (2). Suppose λ is an eigenvalue of T. Then, there exists some v such
that Tv = λv. Since T is nilpotent, it follows that T iv = 0 for some i > 0. Then,

T iv = λiv = 0,

so λ = 0. Thus, all eigenvalues of T are 0.

Now, we will show that (2) implies (3). By Corollary 13.5, there exists a basis v1, . . . , vn of V under which
M(T ) is upper-triangular. Furthermore, by Proposition 12.11, the diagonal entries of M(T ) are exactly the
eigenvalues of T. Since all the eigenvalues are 0, it follows that M(T ) is strictly upper-triangular.

Finally, we have already shown that (3) implies (1) in Example 20.10. Thus, all three statements are equivalent.

Example 20.10 and Proposition 20.11 imply that if T ∈ L(V ) is nilpotent, then Tn = 0. This can also be seen
by Lemma 20.7 in combination with the fact that V = G(0, T ).
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In a later lecture, we will study the Jordan form of operators, which will tell us that for any nilpotent operator
T ∈ L(V ), there exists a basis under which M(T ) has 0’s everywhere except possibly the line directly above
the diagonal (called the superdiagonal), which consists of 0’s and 1’s:

0 1 0
. . . . . .

. . . 1
0 0

 .
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21 Generalized Eigenspaces (continued)

21.1 Review
Last time, we introduced the notion of generalized eigenspaces:

G(λ, T ) = {v ∈ V |(T − λI)iv = 0 for some i > 0}.

Furthermore, we showed in Theorem 20.8 that i is upper-bounded by dimV, so G(λ, T ) = Null((T − λI)dimV ).

21.2 Multiplicity of an Eigenvalue
Now, we will introduce multiplicity.

Definition 21.1 (multiplicty)
Suppose T ∈ L(V ). The multiplicity of an eigenvalue λ of T is dimG(λ, T ).

Since the generalized eigenspace G(λ, T ) always contains the eigenspace E(λ, T ), it follows that the multiplicity
of λ of T is nonzero if λ is an eigenvalue. The following result will show that if λ is not an eigenvalue, then the
multiplicity of λ is 0.

Fact 21.2
Suppose T ∈ L(V ) and λ ∈ C. If λ is not an eigenvalue of T, then G(λ, T ) = {0}.

Proof. Suppose there exists v ∈ G(λ, T ) such that v ̸= 0. Then, let i be the minimal exponent such that
(T − λI)iv = 0. Let u = (T − λI)i−1 ̸= 0. It follows that

(T − λI)u = (T − λI)iv = 0,

so u is an eigenvector with corresponding eigenvalue λ. However, this is a contradiction because we assumed
that λ is not an eigenvalue of T. Therefore, G(λ, T ) = {0}.

This explains why we do not define the notion of a generalized eigenvalue, since that would be identical to our
previous definition of eigenvalues.

21.3 Decomposition of an Operator
We will now prove the main result of generalized eigenspaces.

Theorem 21.3
Suppose T ∈ L(V ) and λ1, . . . , λm are the distinct eigenvalues of T. Then,

V = G(λ1, T )⊕ · · · ⊕G(λm, T ).

Proof. First, we will show that G(λ1, T ) + · · · + G(λm, T ) is a direct sum. It is sufficient to show that if
vi ∈ G(λi, T ) and v1 + · · · + vm = 0, then each vi = 0. Suppose there exists some vi ̸= 0. Without loss of
generality, assume v1 ̸= 0. Let n = dimV. It is clear that

(T − λ2I)
nv2 = (T − λ3I)

nv3 = · · · = (T − λmI)
nvm = 0.

Now, let S = (T − λ2I)
n(T − λ3I)

n · · · (T − λmI)
n. It follows that Sv2 = Sv3 = · · · = Svm = 0.

Now, we will show that Sv1 ̸= 0. Let i be the minimal exponent such that (T − λI)iv1 = 0. Then, let
u = (TλI)

i−1 ̸= 0. It follows that Tu = λ1u, so

Su = (T − λ2I)
n · · · (T − λmI)

n = (λ1 − λ2)
n · · · (λ1 − λm)nu ̸= 0,
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since λ1, . . . , λm are all distinct. Noe, let P = S(T − λ1I)
i−1. Then,

P (v1 + · · ·+ vm) = S(T − λ1I)
i−1v1 + · · ·S(T − λ1I)

i−1vm

= Su+ (T − λ1I)
i−1Sv2 + · · ·+ (T − λ1I)

i−1Svm

= Su

̸= 0.

However, P (v1 + · · · + vm) = P (0) = 0, which is a contradiction. Therefore, G(λ1, T ) + · · · + G(λm, T ) is a
direct sum.

Now, we will show that G(λ1, T ), . . . , G(λm, T ) span V. We will do this using induction on dimV. Let n = dimV.
It is clear that the desired result holds for n = 1. Now, assume n > 1 and the desired result holds for all vector
spaces of smaller dimension. Let U = Range((T − λ1I)

n). We will show that

V = G(λ1, T )⊕ U.

Since dimV = dimNull((T−λ1I)n)+dimRange((T−λ1I)n) = dimG(λ1, T )+dimU, it is sufficient to show that
G(λ1, T )+U is a direct sum. Suppose v ∈ G(λ1, T )∪U. It follows that (T −λ1I)

nv = 0 (because v ∈ G(λ1, T ))
and v = (T − λiI)

nu for some u ∈ V (because v ∈ U). This implies that (T − λ1I)
2nu = 0, so u ∈ G(λ1, T ).

By Theorem 20.8, it follows that (T − λiI)
nu = 0. Since we defined v = (T − λiI)

nu, we know that v = 0, so
G(λ1, T ) + U is a direct sum.

Now, suppose v ∈ U. Then, there exists some u ∈ V such that v = (T − λ1I)
nu. It follows that

Tv = T ((T − λ1I)
nu) = (T − λ1I)

n(Tu),

so Tv ∈ Range((T − λ1I)
n) = U. Thus, U is T -invariant. Because dimU < dimV, we can apply the induction

hypothesis to T |U ∈ L(U), which says that U = G(λ′1, T |U ) ⊕ · · · ⊕ G(λ′m′ , T |U ), where λ′1, . . . , λ′m′ are the
eigenvalues of T |U . However, eigenvalues of T |U are also eigenvalues of T, so

U = G(λ′1, T |U ) + · · ·+G(λ′m′ , T |U )
⊂ G(λ′1, T ) + · · ·+G(λ′m′ , T )

⊂ G(λ1, T ) + · · ·+G(λm, T ).

It follows that

V = G(λ1, T ) + U

= G(λ1, T ) + (G(λ1, T ) + · · ·+G(λm, T ))

= G(λ1, T ) + · · ·+G(λm, T ).

It follows that G(λ1, T ), . . . , G(λm, T ) span V, and we are done.

21.4 Generalized Eigenspaces for Restriction and Quotient Operators
Suppose T ∈ L(V ) and U is a T -invariant subspace of V. Then, we have the restriction operators T |U ∈ L(U)
and the quotient operator T/U ∈ L(V/U).

First, we will consider the relationship between G(λ, T |U ) and G(λ, T ). Suppose v ∈ G(λ, T |U ). It follows
that (T|U − λI)iv = 0 for some i > 0. However, (T|U − λI)iv = (T − λI)iv = 0, so v ∈ G(λ, T ). Therefore,
G(λ, T |U ) ⊂ G(λ, T ).

The relationship between G(λ, T/U) and G(λ, T ) is less obvious. Recall the quotient map π (see Definition
12.7). We will show that π maps G(λ, T ) to G(λ, T/U). Suppose v ∈ G(λ, T ), so (T − λI)iv = 0 for some i > 0.
Then,

π((T − λI)iv) = (T/U − λI)i(π(v)) = 0,

so π(v) ∈ G(λ, T/U).

Now, let πλ : G(λ, T ) → G(λ, T/U) such that πλ(v) = π(v) for any v ∈ G(λ, T ). Recall that Null(π) = U. Then,

Null(πλ) = {v ∈ G(λ, T ), π(v) = 0} = {v ∈ G(λ, T ) ∪ U} = G(λ, T |U ),

which shows how G(λ, T/U) and G(λ, T |U ) are related.

Now, we will show that the map πλ : G(λ, T ) → G(λ, T/U) is surjective.
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Lemma 21.4
The map πλ (as defined above) is surjective.

Proof. We know that

dimG(λ, T/U) ≥ dimRange(πλ) = dimG(λ, T )− dimG(λ, T |U ),

where the inequality follows from the fact that Range(πλ) ⊂ G(λ, T/U) and the equality follows from the
rank-nullity theorem and Null(πλ) = G(λ, T |U ). Summing this inequality over all λ, we get

dimV/U ≥ dimV − dimU.

However, we know that dimV/U = dimV − dimU, which forces dimG(λ, T/U) = dimG(λ, T )− dimG(λ, T |U )
for all λ. Therefore, dimG(λ, T/U) = Range(πλ), so πλ is surjective.

Now, we are ready to prove the main result of this section.

Theorem 21.5
Suppose T ∈ L(V ) and U is a T -invariant subspace of V. Then,

multλ(T ) = multλ(T |U ) + multλ(T/U),

where multλ(T ) represents the multiplicity of λ of T.

Proof. Since πλ is surjective, it follows that Range(πλ) = G(λ, T/U). It follows that

dimG(λ, T ) = dimNull(πll) + dimRange(πλ) = dimG(λ, T |U ) + dimG(λ, T/U).

In other words, multλ(T ) = multλ(T |U ) + multλ(T/U), as desired.

However, note that this does NOT necessarily the case that dimE(λ, T ) = dimE(λ, T |U ) + dimE(λ, T/U).

Example 21.6
Consider T ∈ L(V ) such that

M(T ) =

(
0 1
0 0

)
.

Let U = span(e1). It is clear that E(0, T ) = E(0, T |U ) = span(e1) = U. Also, it follows that M(T/U) is
the lower-right block of M(T ), which is the 1×1 zero matrix. Thus, dimE(0, T/U) = 1. Therefore,

dimE(0, T ) = 1 ̸= 1 + 1 = dimE(0, T |U ) + dimE(0, T/U).

In general, this is because Lemma 21.4 does not hold for non-generalized eigenspaces. For instance, the
map πλ : E(0, T ) → E(0, T/U) would map all v ∈ E(0, T ) to the zero vector because E(0, T ) = U, so πλ is
not surjective.

21.5 Eigenvalues of Upper-Triangular Matrices
Suppose T ∈ L(V ) and the matrix representation of T is the upper-triangular matrix

M(T ) =

a1 ∗
. . .

0 an

 .

By Proposition 12.11, we know that the eigenvalues of T are the values along the diagonal. The next result will
tell us how to determine the multiplicities of each eigenvalue based on the matrix.
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Proposition 21.7
Suppose T ∈ L(V ) and the matrix of T is upper-triangular. The multiplicity of λ ∈ C of T is equivalent to
the number of times λ appears on the diagonal of M(T ).

Proof. We will prove the desired result by induction on dimV. Let n = dimV and M(T ) have diagonal entries
a1, . . . , an. The result is obvious for n = 1. For n > 1, we can partition M(T ) into

a1 ∗
a2 ∗

0
. . .

0 an

 .

Then, U = span(e1) is T -invariant, so M(T |U ) is the upper-left block of M(T ) and M(T/U) is the lower-right
block. By the applying the induction hypothesis on T |U and T/U, we know that

multλ(T |U ) = # of times λ appears in (a1)

multλ(T/U) = # of times λ appears in (a2, . . . , an).

Finally, by Theorem 21.5,

multλ(T ) = multλ(T |U ) + multλ(T/U)

= (# of times λ appears in (a1)) + (# of times λ appears in (a2, . . . , an))

= # of times λ appears in (a1, . . . , an),

as desired.

Example 21.8
Suppose T ∈ L(V ) and the matrix of T is the upper-triangular matrix

M(T ) =

0 3 4
0 5

1

 .

In this example, it is not hard to see that the upper-left 2×2 block is a nilpotent matrix, so G(0, T ) =
span(e1, e2). Thus, the multiplicity of λ = 0 is 2.

Now, suppose the matrix of T is

M(T ) =

0 3 4
1 5

0

 .

In this example, it is not obvious whatG(0, T ) is (for instance, you should verify thatG(0, T ) ̸= span(e1, e3)).
Nevertheless, Proposition 21.7 tells us that that the multiplicity of λ = 0 is 2.

However, what if M(T ) is not an upper-triangular matrix, but rather a block upper-triangular matrix?

Guiding Question
Suppose

M(T ) =

(
A ∗
0 A

)
,

where A is an arbitrary square matrix. Then, how are multλ(T ) and multλ(A) related?

Answer. Let A be an n×n matrix. Then, it follows that U = span(e1, . . . , en) is T -invariant and M(T |U ) =
M(T/U) = A. We will show that this implies that multλ(T |U ) = multλ(T/U).

Let f1, . . . , fn be a basis of U such that M(T |U ) = A. Similarly, let g1, . . . , gn be a basis of V/U such that
M(T/U) = A. Define the linear map S : U → V/U such that S(ei) = fi. Since S maps a basis to a basis, it
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follows that S is an isomorphism. Then, it follows that

S(T1v) = T2(Sv).

The reader should verify that S sends G(λ, T |U ) to G(λ, T/U) and the two generalized eigenspaces are isomorphic.
Thus, G(λ, T |U ) to G(λ, T/U) have the same dimension, so multλ(T |U ) = multλ(T/U).

Finally,

multλ(T ) = multλ(T |U ) + multλ(T/U)

= multλ(A) + multλ(A)

= 2multλ(A).

The next result gives a useful matrix form of any operator.

Theorem 21.9
Suppose T ∈ L(V ). Let T have distinct eigenvalues λ1, . . . , λm with multiplicities d1, . . . , dm. Then, there
exists a basis of T such that

M(T ) =

A1 0
. . .

0 Am

 ,

where each Ai is a di×di upper-triangular matrix of the form

Ai =

λi ∗
. . .

0 λi

 .

Proof. For each T |G(λi,T ), there exists a basis of G(λi, T ) such that M(T |G(λi,T )) is upper-triangular. By
Proposition 21.7, M(T |G(λi,T )) must be of the formλi ∗

. . .
0 λi

 ,

since λi is the only eigenvalue of T |G(λi,T ). Now, since V = G(λ1, T )⊕ · · · ⊕G(λm, T ), concatenating all these
bases of G(λi, T ) gives a basis of V such that M(T ) is of the desired form.

We will expand on the fact that T ∈ L(V ) can be expressed as a block diagonal matrix when we introduce
Jordan form in a later lecture.
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22 Characteristic Polynomial and Jordan Form

22.1 Review
Last time, we discussed how any complex vector space V can be decomposed into the generalized eigenspaces
of any operator T ∈ L(V ) (see Theorem 21.3). Also, we defined the multiplicity of λ of T as the dimension of
G(λ, T ).

22.2 Characteristic Polynomial
Now, we will introduce the characteristic polynomial.

Definition 22.1
Suppose T ∈ L(V ). Let λ1, . . . , λm denote the distinct eigenvalues of T with multiplicities n1, . . . , nm. Then,
the characteristic polynomial of T is

(x− λ1)
n1 · · · (x− λm)nm .

Note that given the characteristic polynomial of any operator T ∈ L(V ), we are able to determine all the
eigenvalues of T with their multiplicities by finding the roots of the polynomial.

Example 22.2
Suppose T ∈ L(V ) and the characteristic polynomial of T is x3 − 2. Then, the eigenvalues of T are the
solutions to the equation x3 − 2 = 0, which happen to be

3
√
2,

3
√
2ω,

3
√
2ω,

where ω = −1+
√
3i

2 . In this example, all three eigenvalues have multiplicity 1.

The following result gives an important property of characteristic polynomials.

Theorem 22.3 (Cayley-Hamilton Theorem)
Suppose T ∈ L(V ). Let p(x) denote the characteristic polynomial of T. Then, p(T ) is the zero operator on
V.

Proof. Let λ1, . . . , λm denote the distinct eigenvalues of T with multiplicities n1, . . . , nm. Denote Ni = (T −
λiI)|G(λi,T ) ∈ L(G(λi, T )). For all v ∈ G(λi, T ), we know by Theorem 20.8 that Nni

i v = 0, so Ni is nilpotent
and Nni

i = 0. Therefore,
(T − λiI)

nivi = 0

for all vi ∈ G(λi, T ). Since (T−λiI)ni is a factor of p(T ), it follows that p(T )vi = 0. Thus, G(λi, T ) ⊂ Null(p(T )).
Since this holds for arbitrary λi, it follows that G(λ1, T ), . . . , G(λm, T ) are all contained in Null(p(T )). However,
since G(λ1, T ), . . . , G(λm, T ) span V, it follows that Null(p(T )) = V. Therefore, p(T ) = 0.
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Example 22.4
Suppose T ∈ L(V ) and the matrix of T is

M(T ) =

(
a b
c d

)
.

We claim (without proof) that the characteristic polynomial of T is x2 − (a + d)x + (ad − bc).a Then,
calculating the matrix of p(T ) gives

M(p(T )) = M(T 2 − (a+ d)T + (ad− bc)I)

=

(
a b
c d

)(
a b
c d

)
−
(
(a+ d)a (a+ d)b
(a+ d)c (a+ d)d

)
+

(
ad− bc 0

0 ad− bc

)
=

(
0 0
0 0

)
,

the last equality you should verify yourself. Thus, p(T ) = 0, as suggested by the Cayley-Hamilton Theorem.
aWe will see why this is the case after we discuss trace and determinant in a later lecture.

22.3 Minimal Polynomial
In this section, we will introduce a polynomial that is closely related to the characteristic polynomial. Before
that, we will need the following definition.

Definition 22.5 (monic polynomial)
A monic polynomial is a polynomial whose leading coefficient equals 1.

Example 22.6
Consider the following polynomials:

• T 3 + T + 2 is a monic polynomial,

• T − 1 is a monic polynomial,

• 2T + 1 is NOT a monic polynomial.

Now, we can define the minimal polynomial.

Definition 22.7 (minimal polynomial)
Suppose T ∈ L(V ). The minimal polynomial of T is the monic polynomial m(x) of lowest possible degree
such that m(T ) = 0.

While the characteristic polynomial p(x) and the minimal polynomial m(x) have the same condition of p(T ) =
m(T ) = 0, they are not necessarily equivalent. For instance, note that

deg(characteristic polynomial of T ) = n1 + · · ·+ nm

= dimG(λ1, T ) + · · ·+ dimG(λm, T )

= dimV,

where the last equality follows from V = G(λ1, T ) ⊕ · · · ⊕ G(λm, T ). However, the minimal polynomial may
have smaller degree, as shown in the following examples.
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Example 22.8
Suppose T ∈ L(V ) and the matrix of T is

M(T ) =

(
2 0
0 2

)
.

It is clear that T has eigenvalue 2 with multiplicity 2, so the characteristic polynomial is (x− 2)2. However,
it is also clear that T − 2I = 0, so the minimal polynomial of T is x− 2.

Example 22.9
Suppose T ∈ L(V ) and the matrix of T is

M(T ) =


0 0 0 0
1 0 0 0
0 0 −1 0
0 0 0 −1

 .

We see that this matrix is block diagonal with lower-triangular blocks:
0 0
1 0

−1 0
0 −1

 .

By Theorem 21.9a, we can see that
V = G(0, T )⊕G(−1, T ),

where G(0, T ) = span(e1, e2) and G(−1, T ) = span(e3, e4). Thus, the characteristic polynomial of T is
p(x) = x2(x+ 1)2.

The minimal polynomial must still include x and x + 1 as factors, although they may have different
exponents than in the characteristic polynomial. In other words, the minimal polynomial of T is of the
form m(x) = x?(x+ 1)?, where the exponents are positive integers less than or equal to 2.

To find the minimal polynomial, we will lower each exponent as much as possible, while still maintaining
the condition m(T ) = 0. First, we will check if T (T + 1)2 = 0. By the matrix of T, we see that Te1 = e2
and Te2 = 0.

T (T + 1)2e1 = (T + 1)2(Te1) = (T + 1)2e2 = (T 2 + 2T + I)e2 = e2.

Thus, T (T + 1)2 ̸= 0.

Now, we will check if T 2(T + 1) = 0. Since M(T ) is block-diagonal, we see that both span(e1, e2)
and span(e3, e4) are T -invariant subspaces of V. It is easy to verify that T 2|span(e1,e2) = 0, so T 2(T +
1)|span(e1,e2) = 0 because T 2(T +1) is a multiple of T 2. Similarly, it is easy to see that (T +1)|span(e3,e4) = 0,
so T 2(T + 1)|span(e3,e4) = 0. Thus, T 2(T + 1) = 0 over all V, so T 2(T + 1) is the mininal polynomial of T.

aRecall that Theorem 21.9 describes a block diagonal matrix with upper-triangular blocks, not lower-triangular. However,
due to symmetry, essentially all results we have proved involving upper-triangular matrices also hold for lower-triangular
matrices.

The following result gives some properties (without proof) of the minimal polynomial.

Fact 22.10
Suppose T ∈ L(V ). Let λ1, . . . , λm denote the distinct eigenvalues of T with multiplicities n1, . . . , nm. Then,

• the minimal polynomial exists and is unique,

• the minimal polynomial is of the form (x− λ1)
d1 · · · (x− λm)dm for 1 ≤ di ≤ ni.
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Example 22.11
Recall Example 22.8. Consider a similar operator T ∈ L(V ) such that

M(T ) =

(
2 1
0 2

)
.

It is clear that the characteristic polynomial of T is (x− 2)2; thus, the minimal polynomial can be either
x−2 or (x−2)2. We can easily verify that T −2I ̸= 0, so x−2 cannot be the minimal polynomial. Therefore,
the minimal polynomial of T is also (x− 2)2.

In summary, the characteristic polynomial tells us the set of eigenvalues and the multiplicity of each eigenvalue
for any operator T ∈ L(V ). The minimal polynomial differs from the characteristic polynomial because it may
have lower exponents than the characteristic polynomial.

22.4 Jordan Form
Now, we will introduce the Jordan form of an operator, which will allow us to write the matrix of an operator
in a nice form using the material we have covered so far about eigenvalues and multiplicity.

First, to motivate the Jordan form, consider the following computational problem. Suppose you are given M(T )
for some operator T ∈ L(V ) and you wish to compute T 9 + 2T 5 − T 3. In general, if M(T ) is a large matrix,
computing large powers will require a very large number of calculations.

A way to make computing powers of large matrices faster is by finding an invertible operator S such that STS−1

is diagonal, since powers of diagonal matrices are very easy to compute. This works because

(STS−1)n = (STS−1) · · · (STS−1) = STnS−1,

so it is easy to recover Tn (hard to compute) from (STS−1)n (easy to compute).

However, as we have seen previously, not all operators are diagonalizable. But, the Jordan form of a matrix
tries to solve this problem by finding a matrix representation which is close to diagonal for all operators.

We will start by investigating Jordan form for nilpotent operators.

Guiding Question
Suppose N ∈ L(V ) is a nilpotent operator. Can we find a basis v1, . . . , vn of V such that M(N) is as simple
as possible?

First, consider some small examples.

Example 22.12
Consider the case where dimV = 2. The case where N = 0 is uninteresting because M(N) will always be
the zero matrix. Thus, assume N ̸= 0. We claim that there exists a basis v1, v2 of V such that

M(N) =

(
0 1
0 0

)
.

To prove this, note that dimNull(N) must be between 0 and 2, inclusive. If dimNull(N) = 2, that would
imply that N = 0, which we assumed not to be the case. Then, since N is nilpotent and dimV = 2, it
follows that N2 = 0. This implies

N2v = N(Nv) = 0

for any v ∈ V, so Nv ∈ Null(N). Because N ̸= 0, there exists some v such that Nv ̸= 0, so dimNull(N) > 0.
Therefore, dimNull(N) = 1.

Now, take v1 /∈ Null(N) and v2 = Nv1. This implies that v2 = Nv1 ∈ Null(N), so v1, v2 is linearly
independent. Thus, v1, v2 forms a basis of V. Then, because Nv2 = 0 and Nv1 = v2, it follows that

M(T, (v2, v1)) =

(
0 1
0 0

)
.
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Example 22.13
Consider the case where dimV = 3. If N = 0, then M(N) is always the zero matrix:

M(N) =

0 0 0
0 0 0
0 0 0

 .

Now, assume N ̸= 0. By similar logic to the previous example, we can show that dimNull(N) cannot be
equal to 0 nor 3. Thus, we have two cases.

If dimNull(N) = 2, then there exists a basis such that

M(N) =

0 1 0
0 0 0
0 0 0

 .

On the other hand, if dimNull(N) = 1, then there exists a basis such that

M(N) =

0 1 0
0 0 1
0 0 0

 .

Let us further investigate the matrices in the above example. Suppose v1, v2, v3 is a basis of V such that

M(N, (v1, v2, v3)) =

0 1 0
0 0 1
0 0 0

 .

From this matrix, we can determine that

Nv1 = 0,

Nv2 = v1,

Nv3 = v2.

We can represent this operator with the following diagram

v3 v2 v1

where each dot represents a basis vector and each arrow represents applying N to each vector. With this diagram
notation, we can also describe the scenario where

M(N, (v1, v2, v3)) =

0 1 0
0 0 0
0 0 0


with the diagram

v3

v2 v1

Finally, we can describe the scenario where

M(N, (v1, v2, v3)) =

0 0 0
0 0 0
0 0 0


with the diagram

v3

v2

v1
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Now, we will use the diagram notation to expand our discussion to Jordan form of nilpotent operators in vector
spaces of any dimension. In the Jordan form, all basis vectors should be included in one of these "chains":

Note that there can be any number of these chains; the only requirement is that the total number of dots should
be dimV. These diagrams uniquely determine a matrix based on the length of each chain; for instance, the
above diagram corresponds to the block-diagonal matrix


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 0


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 0 1 0
0 0 1
0 0 0

 (
0 1
0 0

)
0

(
0
)



.
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23 Jordan Form (continued), Trace, and Determinant

23.1 Review
Last time, we discussed how for any nilpotent operator N ∈ L(V ), there exists a basis v1, . . . , vn such that N
can be expressed with diagrams of the following form:

v4 v3 v2 v1

v7 v6 v5

v8

In terms of matrices, M(N) with respect to this basis would look like


0 1 0 0
0 0 1 0
0 0 0 1
0 0 0 0

 0

0 1 0
0 0 1
0 0 0


0

(
0
)


.

23.2 Jordan Form (continued)
The above matrix is in Jordan form (also known as Jordan canonical form). Now, we are ready to give a
definition of the Jordan form.

Definition 23.1 (Jordan block and Jordan form)
A Jordan block is a matrix of the form 

λ 1 0
. . . . . .

. . . 1
0 λ

 .

A Jordan form is a block-diagonal matrix where all blocks are Jordan blocks.

Note that for a matrix a Jordan form, it not needed that all Jordan blocks have the same λ along the diagonal.
For instance, the matrix 

1 1 0
0 1 1
0 0 1

 (
2 1
0 2

)
(
2
)


is a Jordan form. The Jordan blocks are highlighted with parentheses.

Theorem 23.2
Suppose V is a finite-dimensional complex vector space and T ∈ L(V ). Then,

1. there exists a basis under which M(T ) is a Jordan form,

2. the Jordan blocks that appear in M(T ) are uniquely determined by T up to permutation.

Proof. We will only prove the existence property of the above theorem. In the previous lecture, we gave some
intuition (although not a rigorous proof) on why this statement holds if T is nilpotent. To extend to all T,
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recall that
V = G(λ1, T )⊕ · · · ⊕G(λm, T ).

By definition, (T − λiI)|G(λi,T ) is a nilpotent operator. It follows that there exists a basis of G(λi, T ) such that
M((T − λiI)|G(λi,T )) is a Jordan form. We know that

M(T |G(λ,T )) = M((T − λiI)|G(λi,T )) +M(λiI),

so M(T |G(λ,T )) is also a Jordan form because M(λiI) only adds values along the diagonal. Putting all such
bases together forms a basis of v such that M(T ) is a Jordan form.

In the last lecture, we discussed how Jordan form would help us compute large powers of operators quickly.
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Example 23.3
Suppose T ∈ L(V ) and we wish to compute T 100. To do this, we know by Theorem 23.2 that there exists a
basis of V such that M(T ) is in Jordan form. For instance,

M(T ) =



λ1 1
λ1 1

λ1

 (
λ2 1

λ2

)
(
λ3
)

 .

To compute the 100th power of a matirx, we simply take the 100th power of each of its blocks. To compute
the power of each block, we can express each block as λI + J, where

J =


0 1

. . . . . .
. . . 1

0

 .

By the binomial theorem,

(λI + J) = (λI)100 +

(
100

1

)
(λI)99J +

(
100

2

)
(λI)98J2 + · · ·+ J100.

It is clear that (λI)i = λiI. Furthermore, it can be deduced that

Jm =



0 · · · 1
. . . . . .

. . . 1
. . .

...
0


,

where the 1 in the first row is in the (m+ 1)th column. Thus, using the 5×5 case as an example, we can
calculate

(λI + J)100 =



λ100
(
100
1

)
λ99

(
100
2

)
λ98

(
100
3

)
λ97

(
100
4

)
λ96

λ100
(
100
1

)
λ99

(
100
2

)
λ98

(
100
3

)
λ97

λ100
(
100
1

)
λ99

(
100
2

)
λ98

λ100
(
100
1

)
λ99

λ100


.

Note that if the exponent is smaller than the size of the matrix, the upper-right corner of the matrix would
be filled with zeros. By applying this logic to each block of M(T ), we have a way to quickly compute
M(T 100), as desired.

23.3 Trace
We will now move on to the final chapter of the textbook, first with our discussion of trace.
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Definition 23.4 (trace)

1. The trace of a square matrix A is defined to be the sum of the diagonal elements of A.

2. The trace of an operator T ∈ L(V ) is defined to be the sum of the eigenvalues of T, counted with
multiplicity.

At first glance, these two definitions seem completely unrelated. For now, we will use tr(A) to denote the trace
of a matrix and Tr(T ) to denote the trace of an operator. Later, we will show that these definitions are actually
equivalent, after which we will use tr for both cases.

First, we will study some properties of the trace of a matrix.

Theorem 23.5 (Properties of trace of a matrix)
Suppose A and B are square matrices of the same size. Then,

1. tr(A+B) = tr(A) + tr(B),

2. tr(λA) = λ tr(A).

These properties are easy to verify by matrix addition and scalar multiplication. Note that the above properties
show that tr : Cn,n → C is a linear map.

Lemma 23.6
Suppose A and B are square matrices of the same size. Then, tr(AB) = tr(BA).

Proof. By matrix multiplication, we can calculate

(AB)i,i =

n∑
j=1

Ai,jBj,i.

Thus,

tr(AB) =

n∑
i=1

n∑
j=1

Ai,jBj,i.

Similarly, we can deduce

tr(BA) =

n∑
i=1

n∑
j=1

Bi,jAj,i.

By switching the variable names i and j and switching the order of the summations, it follows that

tr(AB) =

n∑
i=1

n∑
j=1

Ai,jBj,i

=

n∑
j=1

n∑
i=1

Aj,iBi,j

=

n∑
i=1

n∑
j=1

Bi,jAj,i

= tr(BA),

as desired.

Now, suppose T ∈ L(V ) and v1, . . . , vn and u1, . . . , un are bases of V. Let A = M(T, (v1, . . . , vn)) and B =
M(T, (u1, . . . , um)). Recall in an earlier lecture we showed that there exists a change of basis matrix S and
B = S−1AS.

We are now ready to prove the two definitions of trace are equivalent.
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Lecture 23: Jordan Form (continued), Trace, and Determinant

Theorem 23.7
Suppose T ∈ L(V ). Then, Tr(T ) = tr(M(T )).

Proof. First, we will show that tr(M(T )) is independent of the choice of basis. Let v1, . . . , vn and u1, . . . , un
be bases of V and let A = M(T, (v1, . . . , vn)) and B = M(T, (u1, . . . , un)). If S is the change of basis matrix,
then B = S−1AS. It follows that

tr(B) = tr(S−1AS)

= tr((AS)S−1)

= tr(A),

where the second equality follows from Lemma 23.6.

Now, since we have shown that M(T ) is independent of the chosen basis, we only need to show that Tr(T ) =
tr(M(T )) for some basis of V. Let v1, . . . , vn be a basis such that A = M(T, (v1, . . . , vn)) is upper-triangular.
Then, the diagonal entries of A are equivalent to the eigenvalues of T with multiplicity. Therefore, Tr(T ) = tr(A),
as desired.

This theorem is quite fascinating: the left-hand side only depends on the operator T, while the right-hand side
depends on both T and an arbitrary basis v1, . . . , vn. Additionally, why is the trace of a matrix defined as the
sum of its diagonal entries? Can we instead define the trace as another function of the matrix (e.g. the sum of
the entries on the other diagonal or the sum of the entries of any of the columns/rows) and still have Theorem
23.7 hold? The answer turns out to be no, which shows the beauty of the definition of trace.

Example 23.8
Suppose T ∈ L(V ) with matrix representation

M(T ) =

1 3 2
4 0 5
7 9 −1

 .

At first glance, it is impossible to know what the eigenvalues of T are. However, Theorem 23.6 tells us
that the sum of the eigenvalues is equal to tr(M(T )) = 1 + 0 + (−1) = 0. Therefore, if we know two of the
eigenvalues of T, then we are able to easily find the third.

Furthermore, recall from Definition 22.1 that the characteristic polynomial of T is

(x− λ1)
n1 · · · (x− λm)nm ,

where λ1, . . . , λm are the distinct eigenvalues of T with multiplicities n1, . . . , nm. Expanding the polynomial
above, we find that the characteristic polynomial can be expressed as

xn − (n1λ1 + · · ·+ nmλm)xn−1 + · · ·+ (−1)n(λn1
1 · · ·λnm

m ).

Thus, Tr(T ) equals the negative of the coefficient of the xn−1 term.

23.4 Determinant
Now, we will introduce the notion of determinant.

Definition 23.9 (determinant)

1. The determinant of an operator T ∈ L(V ) is defined as the product of the eigenvalues of T, counted
with multiplicity.

2. The determinant of a n×n square matrix A is defined by

det(A) =
∑

σ∈perm(n)

sign(σ)A1,σ(1) · · ·An,σ(n).
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Once again, we will for now use Det(T ) to denote the determinant of an operator and det(A) to denote the
determinant of an matrix.

Recall that the characteristic polynomial of an operator T ∈ L(V ) can be expressed as

xn − (n1λ1 + · · ·+ nmλm)xn−1 + · · ·+ (−1)n(λn1
1 · · ·λnm

m ).

Thus, it follows that Det(T ) equals (−1)n multiplied by the constant term of the characteristic polynomial.

Now, we will explain the formula for the determinant of a matrix:

det(A) =
∑

σ∈perm(n)

sign(σ)A1,σ(1) · · ·An,σ(n).

First, note that this summation has n! terms, each of which is a product of n matrix entries. The notation
perm(n) represents the set of all functions that map (1, 2, . . . , n) to a permutation of (1, 2, . . . , n). For instance,
we can visualize one such function σ with the following diagram:

σ :

1 2 3 4 5

1 2 3 4 5

In this scenario, σ(1) = 4, σ(2) = 2, and so on. Finally, if we draw such a diagram for arbitrary σ, then sign(σ)
is defined to be 1 if the number of crossings (i.e. the total number of times two arrows cross) is even and −1 if
the number is odd.39 For instance, the number of crossings in the above diagram is 7, so sign(σ) = −1.

Consider some simple examples of determinants of matrices.

Example 23.10
Suppose we wish to find the determinant of the 2×2 matrix

A =

(
A11 A12

A21 A22

)
.

We find that perm(2) only has 2 elements:

1 2

1 2

no crossings
sign = 1

1 2

1 2

one crossing
sign = −1

Thus,
det(A) = A11A22 −A12A21,

which is our familiar formula for the determinant of a 2×2 matrix.

39A more formal (but equivalent) definition is that sign(σ) is defined to be 1 if the number of pairs of integers (j, k) with
1 ≤ j < k ≤ n such that σ(j) appears after σ(k) in the list (σ(1), . . . , σ(n)) is even and −1 if the number of such pairs is odd.
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Example 23.11
Suppose we wish to find the determinant of the 3×3 matrix

A =

1 3 2
4 0 5
7 9 −1

 .

There are 6 permutations:

1 · 0 · (−1) −(3 · 4 · (−1)) 2 · 4 · 9

−(1 · 5 · 9) 3 · 5 · 7 −(2 · 0 · 7)

Thus,

det(A) = (1 · 0 · (−1))− (3 · 4 · (−1)) + (2 · 4 · 9)− (1 · 5 · 9) + (3 · 5 · 7)− (2 · 0 · 7) = 144.

Now, similar to what we did with trace, we will show that the two definitions of determinant are equivalent.

Theorem 23.12
Suppose T ∈ L(V ). Then, Det(T ) = det(M(T )).

We will cover the proof of this result in the next lecture.
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24 Determinant (continued)

24.1 Review
Last time, we introduced the definition for the determinant of an operator and the determinant of a matrix (see
Definition 23.9). In particular, recall the formula for the determinant of a matrix A:

det(A) =
∑

σ∈perm(n)

sign(σ)A1,σ(1) · · ·An,σ(n).

In other words, each entry in the summation is the product of n matrix entries, one from each row, such that
no two entries are in the same column. For instance, the permutation

σ :

1 2 3 4

1 2 3 4

would correspond to the product of the matrix elements highlighted below:
A13

A22

A34

A41

 .

Additionally, recall that
sign(σ) = (−1)parity of number of crossings in diagram of σ.

At the end of last lecture, we introduced Theorem 23.12, which relates the two definitions of determinant. We
will prove this result later in this lecture.

24.2 Determinant (continued)
First, we will discuss some properties of determinants.

Theorem 24.1 (Properties of det(A))
Suppose A is a square matrix. Then,

0. multiplying a row/column by some scalar c multiplies det(A) by c,

1. interchanging two rows/columns of A flips the sign of det(A),

2. if A has two rows/columns that are equivalent, then det(A) = 0,

3. det(A) is additive in rows/columns,

4. adding c · (ith row) to the jth row does not change det(A)

Proof. To prove (0), note that each permutation contains one entry from each row and column of the matrix.
Thus, multiplying a row/column by c multiplies each summand by c, so the determinant is multiplied by c.

To prove (1), let A′ be the result when we switch the first two rows of the following 3×3 matrix A:

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

 , A′ =

a21 a22 a23
a11 a12 a13
a31 a32 a33

 .

Also, let σ and τ be the permutations

σ :

1 2 3

1 2 3

τ :

1 2 3

1 2 3
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Note that σ for matrix A and τ for matrix A′ both correspond to the product a11a22a33. However, sign(σ) =
− sign(τ), so σ contributes a11a22a33 to det(A) while τ contributes −a11a22a33 to det(A′). It can be shown that
this logic extends to all such permutations and can be generalized to matrices of arbitrary size, so det(A) =
−det(A′). The proof that the sign of det(A) is flipped when two columns are interchanged is similar.

To prove (2), note that switching the two identical rows/columns gives the same matrix A. Thus, (1) implies
that det(A) = −det(A), so det(A) = 0. Furthermore, note that (0) also implies that if two rows/columns of A
are scalar multiplies of each other, then det(A) = 0.

To prove (3), suppose we have two matrices A and B of the same size which are identical except for a single
row:

A =


... · · ·

...
a1 · · · an
... · · ·

...

 , B =


... · · ·

...
b1 · · · bn
... · · ·

...

 .

Let matrix C also be identical to both A and B except for a single row:

C =


... · · ·

...
a1 + b1 · · · an + bn

... · · ·
...

 .

Let the different row be the ith row. Then,

Ci,σ(i) = Ai,σ(i) +Bi,σ(i)

for all permutations σ. By the definition of determinant of a matrix, it follows that det(C) = det(A) + det(B).

To prove (4), let B be the matrix that is identical to A except the jth row of B is c · (ith row) of A. By (2),
det(B) = 0 because the ith and jth rows are scalar multiples of each other. Then, by (3), det(A + B) =
det(A) + det(B) = det(A), as desired.

The next result will show that determinant is multiplicative.

Proposition 24.2
Suppose A and B are square matrices of the same size. Then, det(AB) = det(A) det(B).

Proof. Recall that we can perform Gaussian elimination on A to obtain a matrix in row-reduced echelon form.
Recall the three elementary row operations:

S(i, j) = swap rows i and j,

M(i; c) = multiply the ith row by c,

A(i
c−→ j) = add c times the ith row to the jth row.

Now, note that performing any elementary row operation on A is equivalent to left-multiplying A by some
matrix.40 Let A′ be the result of performing some elementary row operation e on matrix A and let E be
the matrix corresponding to e. It follows that A′ = EA. Additionally, performing e on matrix AB gives
E(AB) = (EA)B = A′B.

Suppose e = S(i, j). By Theorem 24.1, it follows that det(A′) = −det(A) and det(A′B) = −det(AB). In this
scenario, note that proving det(A′B) = det(A′) det(B) will directly imply det(AB) = det(A) det(B). Similarly,
it can be seen for the other two elementary row operations that proving det(A′B) = det(A′) det(B) is sufficient.

Thus, we can continue performing elementary row operations on A until we obtain a row-reduced echelon form
R. By the same logic as above, it is sufficient to show that det(RB) = det(R) det(B). If R has a row of zeros,
then it can be seen by Theorem 24.1 or the formula for determinant that det(R) = 0. Additionally, RB will

40You can learn more about this here: https://en.wikipedia.org/wiki/Elementary_matrix.
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also have a row of zeros, so det(RB) = det(R) det(B) = 0. If R does not have a row of zeros, then because R is
square, it must take the form

R =

1 0
. . .

0 1

 = I.

Since det(I) = 1,
det(RB) = det(IB) = det(B) = det(I) det(B) = det(R) det(B),

as desired.

We are now ready to prove our desired theorem.

Theorem 24.3
Suppose T ∈ L(V ). Then, Det(T ) = det(M(T )).

Proof. Choose a basis v1, . . . , vn of V such thatM(T, (v1, . . . , vn)) is upper-triangular. LetA = M(T, (v1, . . . , vn))
and let the diagonal elements of A be a1, . . . , an :a1 ∗

. . .
0 an

 .

The eigenvalues of T are the diagonal elements, so det(T ) = a1 · · · an. Furthermore, it can be seen that if σ does
not map every element to itself, then at least one of A1,σ(1), . . . , An,σ(n) must be below the diagonal and thus
equal to 0. Therefore,

det(A) =
∑

σ∈perm(n)

sign(σ)A1,σ(1) · · ·An,σ(n)

= 1 ·A11 · · ·Ann

= a1 · · · an
, so Det(T ) = det(A). Now, let u1, . . . , un be an arbitrary basis of V and let B = M(T, (u1, . . . , un)). Let S be
the change of basis matrix, so B = S−1AS. Then,

det(B) = det(S−1AS)

= det(S−1) det(A) det(S)

= (det(S−1) det(S)) det(A)

= det(S−1S) det(A)

= det(A),

where the second and fourth equalities follow from Proposition 24.2. Therefore, Det(T ) = det(M(T )) under
any basis of V.

From now on, we will use det as notation for the determinant of both operators and matrices.

24.3 Finding Eigenvalues and Eigenvectors
The next result will relate the determinant and the characteristic polynomial.

Proposition 24.4
Suppose T ∈ L(V ). Then, the characteristic polynomial of T equals pT (x) = det(xI − T ).

Proof. Choose a basis of V such that M(T ) is upper-triangular. Then, the diagonal entries of M(T ) are the
eigenvalues λ1, . . . , λn. It follows that M(xI − T ) has diagonal entries x− λ1, . . . , x− λn. Therefore,

det(M(xI − T )) = (x− λ1) · · · (x− λn),

as desired.

142



Lecture 24: Determinant (continued)

The above result finally gives us a way to compute eigenvalues of T. Let A = M(T ) under any basis. Then,
det(xI −A) gives a monic polynomial of degree n. Solving for the roots (with multiplicity) of this polynomial
gives the eigenvalues of T.

Example 24.5
Suppose V is a two-dimensional vector space and T ∈ L(V ). Then, we know that the characteristic
polynomial of T is

pT (x) = (x− λ1)(x− λ2) = x2 − (λ1 + λ2) + λ1λ2 = x2 − (trT )x+ detT.

Let M(T ) = A =

(
a b
c d

)
. Then, trT = trA = a+ d and detT = detA = ad− bc, so

pT (x) = x2 − (a+ d)x+ (ad− bc),

which is a formula we have used before to compute the eigenvalues of a 2×2 matrix.

Now, we will discuss how to compute eigenvectors.

Example 24.6
Suppose T ∈ L(V ) and A = M(T ) is the upper-triangular matrix

A =

1 1 1
0 2 1
0 0 3

 .

Because A is upper-triangular, the eigenvalues are 1, 2, 3. Now, we will explore some examples of finding
eigenvalues and eigenvectors.

1. For λ = 1, it is clear that e1 is an eigenvector.

2. For λ = 2, an eigenvector must be in Null(A− 2I). We can compute

A− 2I =

−1 1 1
0 0 1
0 0 1

 .

Performing Gaussian elimination on this matrix gives1 −1 0
0 0 1
0 0 0

 .

From this matrix, it is clear that Null(A− 2I) is spanned by

1
1
0

 .

3. For λ = 3, we can follow the same process as for λ = 2. In general, you can follow the same process
as above for any matrix/eigenvalue.
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Example 24.7
Suppose T ∈ L(V ) and A = M(T ) is the block-diagonal matrix

A =


1 8 6 0 0
2 9 7 0 0
3 4 5 0 0
0 0 0 −1 3
0 0 0 0 2

 .

Note that the upper-left block is relatively complicated and would require more computation to compute
eigenvalues. However, U = span(e1, e2, e3) is a T -invariant subspace. Then, by Lemma 12.13, −1 and 2 are
eigenvalues of T because they are eigenvalues of the lower-right block of A.

Example 24.8
Suppose T ∈ L(V ) and A = M(T ) is the block upper-triangular matrix

A =


1 2 2 3
3 4 −1 1
0 0 2 2
0 0 0 2

 .

We wish to find all Jordan blocks with diagonal entry equal to 2 (after expressing A in Jordan form). Since
A only has two 2’s on the diagonal, there are either two 1×1 Jordan blocks or one 2×2 Jordan block with
2 on the diagonal.

To determine this, we compare E(2, T ) and G(2, T ). If E(2, T ) = G(2, T ), then there are two 1×1 Jordan
blocks. If E(2, T ) ̸= G(2, T ), then there is one 2×2 Jordan blocks. This simply requires computing
dimE(2, T ), which can be done using Gaussian elimination.
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