18.901, FALL 2024 — HOMEWORK 0

Each part of each main problem is worth 5 points, making this homework total to 15 points. Each part of the bonus problem is worth 0.5 additional points.

MAIN PROBLEMS

Problem 1. Show that there is an injection $\mathbb{R} \to (0,1)$.

Problem 2. Let X and Y be sets, and let $f: X \to Y$ and $g: Y \to X$ be injective functions. The Cantor–Bernstein–Schröder theorem asserts that, given this situation, there exists a bijection between X and Y. In this problem, you will prove this theorem.

Set $X_0 \coloneqq X$ and $Y_0 \coloneqq Y$, and for n a positive integer, recursively define $X_n \coloneqq g(f(X_{n-1}))$ and $Y_n \coloneqq f(g(Y_{n-1}))$.

(a) Show that, for each $n \ge 0$, we have containments

$$X_n \supseteq g(Y_n) \supseteq X_{n+1}, \qquad Y_n \supseteq f(X_n) \supseteq Y_{n+1}.$$

(b) Let $F: X \to Y$ be the function defined by

$$F(x) \coloneqq \begin{cases} f(x) & \text{if } x \in X_n \smallsetminus g(Y_n) \text{ for some } n \ge 0\\ g^{-1}(x) & \text{otherwise} \end{cases}$$

(note that the condition for the first case failing to hold for n = 0 means that $x \in g(Y)$, and since g is injective, there then exists a unique $y \in Y$ such that g(y) = x; we denote this y by $g^{-1}(x)$ in the second case). Show that F is bijective.

BONUS PROBLEMS

Problem 3. For a set X, we let $\mathcal{P}(X)$ denote the powerset of X, i.e. the set of all subsets of X.

(a) Show that there is a bijection between \mathbb{R} and $\mathcal{P}(\mathbb{N})$.

Hint: You may want to use Problems 1 and 2. Moreover, you may use without proof the following facts:

- for any sequence $\{a_n\}_{n\in\mathbb{N}}$ where $a_n \in \{0,1\}$ for each $n \in \mathbb{N}$, the series $\sum_{n=0}^{\infty} \frac{a_n}{2^n}$ converges;
- for any $x \in (0,1)$, there exists a sequence $\{a_n\}_{n \in \mathbb{N}}$ where $a_n \in \{0,1\}$ for each $n \in \mathbb{N}$ such that $x = \sum_{n=0}^{\infty} \frac{a_n}{2^n}$.
- (b) For any set X, show that there is a bijection between $\mathcal{P}(X) \times \mathcal{P}(X)$ and $\mathcal{P}(X \sqcup X)$.
- (c) Show that there is a bijection between $\mathbb{N} \sqcup \mathbb{N}$ and \mathbb{N} .
- (d) Deduce from the previous parts of the problem that there exists a bijection between \mathbb{R} and \mathbb{R}^2 .