18.901, FALL 2024 — HOMEWORK 5

Each part of each main problem is worth 5 points, so this homework is graded out of 50 points. Each part of each bonus problem is worth 0.5 additional points.

MAIN PROBLEMS

Problem 1. Let $\{X_{\alpha}\}_{\alpha \in A}$ be a collection of path connected topological spaces. Show that the product space $\prod_{\alpha \in A} X_{\alpha}$ is path connected.

Problem 2. We say that a topological space X is totally disconnected if any nonempty connected subspace of X contains exactly one point.

- (a) Let S be a set equipped with the discrete topology. Show that S is totally disconnected.
- (b) Regard \mathbb{Q} as a subspace of \mathbb{R} . Show that \mathbb{Q} is totally disconnected.
- (c) Let $\{X_{\alpha}\}_{\alpha \in A}$ be a collection of totally disconnected topological spaces. Show that the product space $\prod_{\alpha \in A} X_{\alpha}$ is totally disconnected.

Problem 3. For *n* a positive integer and $x = (x_1, \ldots, x_n) \in \mathbb{R}^n$, let $||x|| \coloneqq \sqrt{x_1^2 + \cdots + x_n^2}$.

Let $k \in \mathbb{N}$. Let $S^k := \{x \in \mathbb{R}^{k+1} : ||x|| = 1\}$ and let $D^k := \{y \in \mathbb{R}^k : ||y|| \le 1\}$. Let \sim_1 be the equivalence relation on S^k generated by the relation $(x_1, \ldots, x_k, x_{k+1}) \sim_1 (x_1, \ldots, x_k, -x_{k+1})$ for (x_1, \ldots, x_{k+1}) such that $x_{k+1} \neq 0$. Show that the quotient space S^k/\sim_1 is homeomorphic to D^k .

Problem 4. Let S^1 be as in Problem 3. Let $f: S^1 \to \mathbb{R}$ be a continuous function. Show that there exists $x \in S^1$ such that f(x) = f(-x).

Problem 5. Let k be a positive integer. Let \sim_2 be the equivalence relation on $\mathbb{R}^{k+1} \setminus \{0\}$ given by $x \sim_2 tx$ for $x \in \mathbb{R}^{k+1} \setminus \{0\}$ and $t \in \mathbb{R} \setminus \{0\}$. The quotient space $(\mathbb{R}^{k+1} \setminus \{0\})/\sim_2$ is denoted \mathbb{RP}^k and called k-dimensional real projective space. The equivalence class of $(x_0, x_1, \ldots, x_k) \in \mathbb{R}^{k+1} \setminus \{0\}$ with respect to \sim_2 is denoted by $[x_0 : x_1 : \cdots : x_k] \in \mathbb{RP}^k$.

- (a) Show that there is a bijection between \mathbb{RP}^k and the set of lines in \mathbb{R}^{k+1} that pass through the origin.
- (b) Show that \mathbb{RP}^k is locally Euclidean of dimension k. (Hint: For each $0 \le i \le k$, consider the subspace of \mathbb{RP}^k consisting of equivalence classes $[x_0:x_1:\dots:x_k]$ such that $x_i \ne 0$.)
- (c) Let S^k and D^k be as in Problem 3. Let \sim_3 be the equivalence relation on S^k generated by the relation $x \sim_3 -x$ for $x \in S^k$, and let \sim_4 be the equivalence relation on D^k generated by the relation $y \sim_4 -y$ for $y \in S^{k-1}$. Show that the quotient spaces S^k/\sim_3 and D^k/\sim_4 are both homeomorphic to \mathbb{RP}^k .
- (d) Let \sim_5 be the equivalence relation on $[0,1] \times [0,1]$ generated by the relations $(t,0) \sim_5 (1-t,1)$ and $(0,t) \sim_5 (1,1-t)$ for $t \in [0,1]$. Show that the quotient space $([0,1] \times [0,1])/\sim_5$ is homeomorphic to \mathbb{RP}^2 .

BONUS PROBLEMS

Problem 6. For this problem you may assume Tychonoff's theorem. Equip the set $\{0, 1\}$ with the discrete topology and equip the product $\prod_{n \in \mathbb{N}} \{0, 1\}$ with the product topology. Show that there is a quotient map $p : \prod_{n \in \mathbb{N}} \{0, 1\} \to [0, 1]$.

Problem 7. Recall that given two embeddings of topological spaces $i: A \to X$ and $j: A \to Y$, we defined the associated gluing $X \amalg_A Y$ to be the quotient space of the disjoint union $X \amalg Y$ by the equivalence relation ~ generated by the relation $i(a) \sim j(a)$ for $a \in A$. Let us note now that this definition makes sense even when i and j are arbitrary continuous functions, not necessarily embeddings.

This problem is a continuation of Problem 5.

(a) Let $i : \mathbb{R}^{k+1} \setminus \{0\} \to \mathbb{R}^{k+1}$ be the inclusion function, and let $j : \mathbb{R}^{k+1} \setminus \{0\} \to \mathbb{RP}^k$ be the quotient function for the equivalence relation \sim_2 . Let $i' : S^k \to D^{k+1}$ be the inclusion function, and let $j' : S^k \to \mathbb{RP}^k$ be the quotient function for the equivalence relation \sim_3 (using the homeomorphism of Problem 5(c)). Show that the associated gluings

$$\mathbb{R}^{k+1} \amalg_{\mathbb{R}^{k+1} \smallsetminus \{0\}} \mathbb{RP}^k, \qquad \mathrm{D}^{k+1} \amalg_{\mathrm{S}^k} \mathbb{RP}^k$$

are homeomorphic to each other.

(b) Show that the two gluings in the previous part are both homeomorphic to \mathbb{RP}^{k+1} .