18.901, FALL 2024 — HOMEWORK 6

Each part of each main problem is worth 5 points, so this homework is graded out of 40 points.

MAIN PROBLEMS

Problem 1. Let X and Y be topological spaces and assume that Y is nonempty. We say that a continuous map $f: X \to Y$ is nullhomotopic if it is homotopic to a constant map.

- (a) Show that the following conditions are equivalent:
 - (i) The identity map $id_Y : Y \to Y$ is nullhomotopic.
 - (ii) Y is homotopy equivalent to a topological space with one point.

We say that Y is contractible if these equivalent conditions are satisfied.

(b) Suppose that Y is contractible. Show that then any continuous map $f: X \to Y$ is nullhomotopic.

Problem 2. A topological group is a group G equipped with a topology (on its underlying set) such that the multiplication map $G \times G \to G$, sending $(a, b) \mapsto ab$, and the inversion map $G \to G$, sending $a \mapsto a^{-1}$, are both continuous.

- (a) Let G be a group equipped with a topology. Show that G is a topological group if and only if the map $G \times G \to G$ sending $(a, b) \mapsto ab^{-1}$ is continuous.
- (b) Let G be a topological group and let $a, a' \in G$. Show that there exists a homeomorphism $f: G \to G$ such that f(a) = a'.

Problem 3. Let (X, x_0) and (Y, y_0) be pointed topological spaces. Let $A := \{a\}$ be the topological space with one point labelled a, and let $i : A \to X$ and $j : A \to Y$ be the embeddings given by $i(a) := x_0$ and $j(a) := y_0$. The wedge sum $X \lor Y$ is defined to be the gluing $X \amalg_A Y$ of X and Y along the embeddings i and j of A.

- (a) Let $S^1 \subset \mathbb{R}^2$ be the unit circle centered at the origin, equipped with the basepoint (1,0). Show that there is an embedding $f: S^1 \vee S^1 \to \mathbb{R}^2$.
- (b) Let $B \subset I \times I$ be the boundary of the square. Show that there is a quotient map $p: B \to S^1 \vee S^1$.
- (c) Let $T := S^1 \times S^1$. Show that for any two points $t, t' \in T$, there exists a homeomorphism $g: T \to T$ such that g(t) = t'.
- (d) Let T be as in the previous part and let $t \in T$. Show that there is a subspace U of T that is homeomorphic to $S^1 \vee S^1$ and is a deformation retract of $T \setminus \{t\}$.