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LECTURE 0. INTRODUCTION (SEP 5)

§0.1. What you have seen

Let R denote the set of real numbers, and for any positive integer n, let Rn denote the set
of n-tuples of real numbers (x1, . . . , xn).

You have likely spent some time learning about functions f ∶ Rm → Rn, that is, functions
whose input is an m-tuple (x1, . . . , xm) of real numbers and whose output is an n-tuple
(y1, . . . , yn) of real numbers. For example, you may have learned what it means for such a
function to be continuous or differentiable or linear; you may have learned techniques and
formulas that allow you to differentiate various differentiable functions; you may have learned
about the algebra of linear functions. These notions are natural and useful in modelling
and reasoning about many kinds of things in the world, an apple falling from a tree or a
computer learning to engineer software.

But let us return to meditate on the mathematical basics: how well do you really know
these objects Rn, and how much do you know about the functions that exist between them?
You may have some intuitive sense of the objects: they are mathematical expressions of the
idea of “n-dimensional space”. In particular, we think of Rn as having dimension n, and just
as we think of two different positive integers m and n as being, well, different, we think of
the spaces Rm and Rn as being different. Perhaps you have seen a way to make this intuition
about dimension precise in the context of linear algebra. However, if we allow more than just
the linear functions into consideration, the opportunity arises for things to become murkier.

The first surprise is that, if we allow completely arbitrary functions, then we cannot even
distinguish between one dimension and the next, in the following sense:

Theorem 0.1.1. [Cantor] There is a bijection between R and R2.

On the other hand, once we impose continuity on our functions, this kind of identification
becomes impossible:

Theorem 0.1.2. There is neither a continuous bijection R2 → R nor a continuous bijection
R → R2.

Nevertheless, continuous functions can do rather surprising things too:

Theorem 0.1.3. [Peano] There is a continuous surjection R → R2.

These results demonstrate, by their veracity or the subtlety of their veracity, that the
intuitions mentioned above cannot be taken for granted. You will learn the tools to prove,
and may in fact even prove, all of these results during this course.

Remark 0.1.4. It is straightforward to deduce from Theorem 0.1.1 that for any positive
integers m and n, there is a bijection between Rm and Rn, and similarly from Theorem 0.1.3
that for any positive integers m and n, there is a continuous surjection Rm → Rn.

In contrast, one cannot deduce in a straightforward manner from Theorem 0.1.2 that
there do not exist continuous bijections Rm → Rn for m ≠ n. (I encourage you to see this for
yourself by trying to make such a deduction.) We will return to this point in §0.3.

§0.2. Continuity

The theme of continuity was raised in the discussion of §0.1. One of the main goals of this
course is to study the notion of continuous function in more general settings than between
Euclidean spaces. The fact is that this notion, when understood in appropriate generality, is
relevant throughout mathematics. Indeed, a companion goal of the course will be to start
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getting a sense of this phenomenon, i.e. of the role of continuity in contexts that at first
appear quite different from the familiar context of Euclidean space.

To accomplish these goals, we will introduce and study a more abstract notion of space
for which we can make sense of the notion of continuous function. This abstraction should of
course include the Euclidean spaces as examples, and other interesting examples too, which
we will also introduce and study. This will be a large part of our project in the first half
of the course. The remainder of this section will be an overview of this; we will keep our
discussion today informal for the most part, and begin making these ideas mathematically
precise in the next lecture.

In fact, we will introduce two abstract notions of space. For motivation, let us recall
what it means for a function f ∶ Rm → Rn to be continuous at a point x ∈ Rm: it means that
for any ϵ > 0, there exists δ > 0 such that if y ∈ Rm has distance < δ from x, then f(y) has
distance less than ϵ from f(x). The key structure on Euclidean space that we are using in
this definition is that of the distance between two points. This leads to our first abstract
notion of space:

Heuristic 0.2.1. Let X be a set. A metric on X is a well-behaved notion of distance between
any two elements of X, encoded as a function d ∶X ×X → R satisfying certain properties. A
metric space is a pair (X,d) where X is a set and d is a metric on X.

As alluded to above, given two metric spaces (X,dX) and (Y, dY ), we may use the ϵ-δ
formulation to define what it means for a function f ∶ X → Y to be continuous. We can
similarly make sense of the notion of a convergent sequence in a metric space.

Example 0.2.2. Let Z denote the set of integers. As a subset of the real numbers, Z inherits
the familiar notion of distance: for i, j ∈ Z, we set d(i, j) = ∣i − j∣; this is an example of a
metric on Z.

This is not the only metric on Z, however. For example, let p be a prime number; for
k ∈ Z, let vp(k) be the number of times p divides k; and set ∣k∣p ∶= p−vp(k). Then for i, j ∈ Z,
we may define dp(i, j) = ∣i − j∣p, and this also defines a metric on Z, called the p-adic metric.
In this metric, the sequence 1, p, p2, p3, . . . converges to 0. Working with continuity in this
setting can help in understanding phenomena in number theory, as we will see in a future
lecture.

Let us now move on to our second abstract notion of space. Given a point x ∈ Rm and
δ > 0, we may think of the set of points in Rm that have distance < δ from x as a kind of
“neighborhood” of the point x; and we may similarly think of the set of points in Rn that
have distance < ϵ from f(x). In these terms, the ϵ-δ definition of continuity above can be
expressed as follows: for any neighborhood V of f(x) in Rn, there is a neighborhood U of x
in Rm such that f carries points in U to points in V . This leads to the followion notion:

Heuristic 0.2.3. Let X be a set. A topology on X is a well-behaved notion of neighborhoods1

in X, encoded as a collection T of subsets of X satisfying certain properties. A toplogical
space is a pair (X,T) where X is a set and T is a topology on X.

Given two topological spaces (X,TX) and (Y,TY ), we may make sense of what it means
for a function f ∶ X → Y to be continuous using the reformulated expression of continuity
just above.

Example 0.2.4. There is a topology on Rm where a subset U ⊆ Rm is a neighborhood if for
each point x ∈ U , there exists some δ > 0 such that all points of distance < δ from x also lie
in U . With respect to this topology, the abstract notion of continuity for topological spaces

1The use of the word “neighborhood” in this lecture is nonstandard, and just meant to supply intuition for
now. The precise terminology, which will be used later in the course, is “open subset”. Moreover, sometimes
people define “neighborhood” in a precise way to mean something different than “open subset”.
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recovers the one with which we began for Euclidean spaces.
This is not the only topology on Rm, however. For example, there is the Zariski topology,

in which a subset U ⊆ Rm is a neighborhood if for each point x ∈ U , there exists a polynomial
f , with real coefficients and in m variables, such that f(x) ≠ 0 and moreover all points y such
that f(y) ≠ 0 also lie in U . Note that this definition still makes sense when R is replaced by
an arbitrary field, e.g. the complex numbers C, the rational numbers Q, or the finite field
Fp of numbers modulo p, where p is a prime number. Every neighborhood in the Zariski
topology on Rm is also a neighborhood in the standard topology defined above, but not
conversely: for example, the open interval (0, 1) ⊂ R is not a Zariski neighborhood. Working
with continuity in this setting can help in the study of polynomial equations, i.e. the subject
of algebraic geometry, as we will see in a future lecture.

§0.3. Shape

Here is a slogan: a continuous function is one that preserves shape. In this section, we’ll
take a first look at three matters which give some meaning to this slogan, and which we will
study in detail later on. The ideas discussed in this section are entry points into the subjects
of algebraic topology and homotopy theory; they will be the focus of the second half of the
course.

Example 0.3.1. Let’s discuss the idea behind the following part of Theorem 0.1.2: no
bijection f ∶ R2 → R can be continuous. Suppose given such a bijection f . It sends the origin
0 ∈ R2 to some point f(0) ∈ R, and it induces a bijection between the complements of these
points: R2 ∖ {0}→ R ∖ {f(0)}.

Now let’s contemplate the shapes of the spaces R2∖{0} and R∖{f(0)}. Can you articulate
any qualitative differences between the two? Here is one: the space R2 ∖ {0} is connected,
while the space R∖{f(0)} is not so. For example, given any two points in R2∖{0}, you could
draw a continuous path in R2 that starts at one at ends at the other and never intersects the
origin, i.e. is in fact a continuous path in R2 ∖ {0}. On the other hand, if you pick one real
number less than f(0) and one greater than it, then there is no continuous path between
them in R ∖ {f(0)}: any such path in R would necessarily pass through the point f(0).

This difference in shape in fact rules out the continuity of f : if f were continuous, then
the connectedness of R2 ∖ {0} would imply the connectedness of R ∖ {f(0)}—for example,
to find a continuous path joining two points in the latter, you could apply f to a continuous
path joining the two corresponding points in the former—leading to a contradiction.

This notion of connectedness is one that can be formulated in the general setting of
topological spaces. We will study it in this generality and understand the above argument
rigorously in a future lecture.

Example 0.3.2. Continuing in the vein of Example 0.3.1, and coming back to the point
raised in Remark 0.1.4: is there a continuous bijection f ∶ R3 → R2? The idea used in
Example 0.3.1 cannot be used to rule this out, as the complement of a point in either R3 or
R2 is connected. However, a variant of this idea can be used: that is, it is in fact possible to
articulate a qualitative difference between the shapes of the complements of a point in R3

and R2, ruling out the existence of a continuous bijection f ∶ R3 → R2.
The variant idea is the following. Let x ∈ R2 be any point. Then, while any two points in

R2 ∖ {x} can be joined by a continuous path, it is not true that given two such continuous
paths, one path can necessarily be continuously deformed into the other. Indeed, suppose
you draw two paths that together form a loop around x. You can imagine that if you try
to continuously push one to the other in R2, then the path will inevitably at some time
intersect the point x. This phenomenon can be equivalently expressed as follows: not every
continuous loop in R2 ∖ {x} can be continuously contracted to a point. On the other hand,
this can always be achieved in R3 ∖ {0}; try to picture this. The technical terminology is
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that R3 ∖ {0} is simply connected, while the complement of a point in R2 is not so.
Simple connectedness is a more subtle and fun notion than connectedness. Rigorously

developing the theory of loops and their contractions, and proving the claims made above,
will lead us into the realm of group theory, and we will begin to see the close connection
between group theory and topology.

Example 0.3.3. Let T ⊂ R3 be the subset consisting of those points (x, y, z) such that

(
√
x2 + y2 − 3)2 + z2 = 4.

On the other hand, take a piece of paper and glue each pair of opposite sides together.
Intuitively, these two objects have the same shape. How do we make this into a precise
mathematical statement? We will learn how to do so in future lectures, using the language
of continuous maps between topological spaces.

What if we change the gluing by adding a twist when we glue one or both of the pairs of
opposite sides? We now run into some physical limitations when we try to actually carry
out this procedure with paper, but can we make sense of it as a mathematical object? Is its
shape different than the more familiar one above?
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LECTURE 1. METRIC SPACES (SEP 10)

§1.1. Definition and examples

Definition 1.1.1. Let X be a set. A metric on X is a function d ∶X ×X → R satisfying the
following properties:
(1) Identity: For all x ∈X, we have d(x,x) = 0.
(2) Positivity: For all x, y ∈X such that x ≠ y, we have d(x, y) > 0.
(3) Symmetry: For all x, y ∈X, we have d(x, y) = d(y, x).
(4) Triangle inequality: for all x, y, z ∈X, we have d(x, z) ≤ d(x, y) + d(y, z).

Definition 1.1.2. A metric space is a pair (X,d) where X is a set and d is a metric on X.

Remark 1.1.3. Let (X,d) be a metric space. The set X may be called the underlying set
of the metric space. We will often be sloppy in our notation/terminology and identify the
metric space (X,d) with its underlying set X. For example, we will say something like: “Let
X be a metric space. Then ...”—when we do this, we are simply leaving the metric implicit,
for psychological or linguistic ease. If we have done this and then subsequently need to invoke
the metric in our discussion, we may denote it by dX to be clear, or simply by d if confusion
is unlikely to result.

Example 1.1.4. On the set of real numbers R, we have the standard metric d, defined by
the formula d(x, y) = ∣x − y∣.

Nonexample 1.1.5. Let s ∶ R ×R → R be the function given by s(x, y) ∶= (x − y)2. This
function satisfies the first three properties of Definition 1.1.1, but it does not satisfy the
triangle inequality: for example, taking x = 0, y = 1/2, and z = 1, we have s(x, y) = s(y, z) = 1/4
and s(x, z) = 1.

Example 1.1.6. On any set X, we may define the discrete metric ddisc by the formula

ddisc(x, y) ∶=
⎧⎪⎪⎨⎪⎪⎩

0 if x = y
1 if x ≠ y.

Construction 1.1.7. Let n be a positive integer and let X1, . . . ,Xn be metric spaces. There
are many ways to define a metric on the product set X ∶= ∏ni=1Xi. For each real number
q ≥ 1, there is a metric dq on X, defined by the formula

dq((x1, . . . , xn), (y1, . . . , yn)) ∶= (
n

∑
i=1
dXi(xi, yi)q)

1/q

.

There is also a metric d∞ on X, defined as follows:

d∞((x1, . . . , xn), (y1, . . . , yn)) ∶= max
1≤i≤n

dXi(xi, yi).

For 1 ≤ q ≤∞, we will refer to the metric dq defined above as the ℓq product metric on X.
In verifying that these functions indeed define metrics, the only property from Defini-

tion 1.1.1 that is nonobvious is the triangle inequality. The cases q = 1 and q = ∞ can be
handled straightforwardly, the case q = 2 can be deduced from the Cauchy–Schwarz inequality,
and for general 1 < q <∞ it follows from Minkowski’s inequality.

Example 1.1.8. Let n be a positive integer. The Euclidean space Rn is the n-fold product
R ×⋯ ×R. Thus, combining Example 1.1.4 and Construction 1.1.7, we obtain a metric dq
on the Euclidean space Rn, for any 1 ≤ q ≤∞ and positive integer n. The case q = 2 is the
standard notion of distance, and we will refer to it as the standard metric on Rn. The case
q = 1 is sometimes referred to as the taxicab metric or Manhattan metric.
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Construction 1.1.9. Let X be a metric space and let i ∶ Y ↪X be an injection of sets (for
example, the inclusion of a subset, or a bijection). Then the composition

Y × Y i×iÐ→X ×X dXÐ→ R

is a metric on Y ; we refer to it as the restricted metric on Y or induced metric on Y (note that
it depends on i). We will often regard subsets of metric spaces as metric spaces themselves;
if it is not specified otherwise, then we are doing so by this procedure.

Example 1.1.10. Let r > 0 and let Cr ⊆ R2 denote the circle of radius r centered at the
origin, i.e. the subset {(x, y) ∈ R2 ∶ x2 + y2 = r}. We may restrict the standard metric on R2

to obtain a metric on Cr. In this lecture, we will refer to this as the planar metric on Cr.
On the other hand, we have a bijection θ ∶ Cr → [0, 2π), namely the usual polar coordinate

function, restricted to Cr. As [0, 2π) is a subset of R, the standard metric on R induces one
on Cr via θ. In this lecture, we will refer to this as the angular metric on Cr. This is different
than the planar metric, as we will see below (in Examples 1.2.5, 1.3.3, 1.3.10, and 1.4.7).

§1.2. Basic geometric notions

Throughout this section, we let X be a metric space.

Definition 1.2.1. By a point of X we mean the same thing as an element of (the underlying
set of) X.

Definition 1.2.2. Let r be a positive real number. For a point x ∈X, we set

BX(x, r) ∶= {x′ ∈X ∶ d(x,x′) < r}, BX(x, r) ∶= {x′ ∈X ∶ d(x,x′) ≤ r},

and we refer to these as the open ball of radius r centered at x and the closed ball of radius
r centered at x, respectively; we may choose to drop the subscript X in the notation if it is
clear from context.

Exercise 1.2.3. For each of the metrics d1, d2, d∞ on R2, draw the open and closed balls
B((0,0),1) and B((0,0),1).

Definition 1.2.4. We define the diameter of X as follows:

diam(X) ∶= sup
x,x′∈X

d(x,x′).

Note that this may be infinite; we say that X is bounded if diam(X) is in fact finite. We say
that a subset Y ⊆X is bounded if it is so when regarded as a metric space via restriction of
the metric on X.

Example 1.2.5. Let Cr be as in Example 1.1.10. In the planar metric, we have diam(Cr) = 2r,
while in the angular metric, we have diam(Cr) = 2π.

Definition 1.2.6. Let Y be another metric space and let f ∶ X → Y be a function (i.e. a
function between the underlying sets). We say that f is an isometry if it preserves distance:
that is, if for all x,x′ ∈X we have dY (f(x), f(x′)) = dX(x,x′).

Exercise 1.2.7. Equipping R and R2 with their standard metrics, give an example of an
isometry f ∶ R → R2 and an example of a function g ∶ R → R2 that is not an isometry.

§1.3. Convergent sequences and closedness

We continue to fix a metric space X for this section.

Definition 1.3.1. Let {xn}n∈N be a sequence of points in X. For a point x ∈X, we say that
the sequence {xn}n∈N converges to x if for all ϵ > 0, there exists N > 0 such that for n > N ,
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we have d(x,xn) < ϵ. We say that the sequence {xn}n∈N is convergent if there exists a point
x ∈X such that {xn}n∈N converges to x.

Remark 1.3.2. We can slightly rephrase the definition of convergence using open balls: the
condition d(x,xn) < ϵ is equivalent to the condition xn ∈ BX(x, ϵ).

Example 1.3.3. Let C1 be as in Example 1.1.10. For n ∈ N, let

xn ∶= (cos(2π − 1
n+1), sin(2π −

1
n+1)) ∈ C1.

In the planar metric on C1, the sequence {xn}n∈N converges to the point (1, 0) ∈ C1, while in
the angular metric, the sequence is not convergent.

Proposition 1.3.4. Let {xn}n∈N be a sequence of points in X, and let x,x′ ∈ X. Suppose
that {xn}n∈N converges both to x ∈X and x′ ∈X. Then x = x′.

Proof. By the positivity property of a metric, it suffices to show for any ϵ > 0 that
d(x,x′) < ϵ. By definition of convergence, there exists some n ∈ N such that d(x,xn) < ϵ/2
and d(x′, xn) < ϵ/2. Then the triangle inequality properties and symmetry properties give us

d(x,x′) ≤ d(x,xn) + d(xn, x′) = d(x,xn) + d(x′, xn) < ϵ,

as desired.

Notation 1.3.5. Let {xn}n∈N be a convergent sequence in X. By Proposition 1.3.4, the
sequence converges to a unique point of X, and hence it is reasonable to give this point a
definite name in terms of the original sequence: we denote it by limn→∞ xn and refer to it as
the limit of the sequence {xn}n∈N.

Definition 1.3.6. Let Y be a subset of X. We define another subset Y ⊆ X to consist of
those points y ∈X such that there exists a sequence {yn}n∈N of points in Y that converges
to y in X. We refer to Y as the closure of Y in X. We say that Y is closed if Y = Y , and we
say that Y is dense if Y =X.

Warning 1.3.7. In the context of Definition 1.3.6, note that the definition of the closure Y ,
as well as of Y being closed or dense, depend on the ambient metric space X. For example,
if we regard Y as a metric space itself, by restricting the metric from X, then Y is always
closed as a subset of itself, whether or not it is as a subset of X.

Proposition 1.3.8. Let Y be a subset of X and let Y be its closure in X. Then Y is a
closed subset of X.

Proof. Homework problem.

Example 1.3.9. For any real numbers a ≤ b, the closed interval [a, b] is a closed subset of R.

Example 1.3.10. Let C1 and θ ∶ C1 → [0,2π) be as in Example 1.1.10, and set Y ∶=
θ−1([π, 2π)) ⊆ C1. In the planar metric on C1, the subset Y is not closed, while in the angular
metric on C1, the subset Y is closed.

Example 1.3.11. Z is a closed subset of R, and Q is a dense subset of R.

§1.4. Continuous functions

Definition 1.4.1. Let X and Y be metric spaces. We say that a function f ∶X → Y (i.e. a
function between the underlying sets) is continuous if for all x ∈ X and for all ϵ > 0, there
exists δ > 0 such that for x′ ∈X with dX(x,x′) < δ, we have dY (f(x), f(x′)) < ϵ.

Remark 1.4.2. We can again slightly rephrase the definition using open balls: the last
clause says that for all x′ ∈ BX(x, δ) we have f(x′) ∈ BY (f(x), ϵ).
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Proposition 1.4.3. Let X be a metric space and let x0 ∈ X. Then the function d(x0,−) ∶
X → R, sending x0 ↦ d(x0, x), is continuous (when R is equipped with the standard metric).

Proof. Fix x ∈ X and ϵ > 0. We must find δ > 0 such that for x′ ∈ BX(x, δ) we have
BR(d(x0, x), ϵ). In fact, we may take δ = ϵ: supposing that d(x,x′) < ϵ (and hence d(x′, x) < ϵ,
by symmetry), the triangle inequality gives us:

d(x0, x
′) ≤ d(x0, x) + d(x,x′) < d(x0, x) + ϵ Ô⇒ d(x0, x

′) − d(x0, x) < ϵ,
d(x0, x) ≤ d(x0, x

′) + d(x′, x) < d(x0, x
′) + ϵ Ô⇒ d(x0, x) − d(x0, x

′) < ϵ.

Together, these imply that ∣d(x0, x) − d(x0, x
′)∣ < ϵ.

Exercise 1.4.4. Let X be a set equipped with the discrete metric and let Y be any metric
space. Show that any function f ∶X → Y is continuous.

Proposition 1.4.5. Let X, Y , and Z be metric spaces, and let f ∶X → Y and g ∶ Y → Z be
continuous functions. Then the composition g ○ f ∶X → Z is continuous.

Proof. Fix x ∈ X and ϵ > 0. Since g is continuous, we may choose ρ > 0 such that for
y′ ∈ BY (f(x), ρ) we have g(y′) ∈ BZ(g(f(x)), ϵ). Since f is continuous, we may choose δ > 0
such that for x′ ∈ BX(x, δ) we have f(x′) ∈ BY (f(x), ρ), and hence g(f(x′)) ∈ BZ(g(f(x)), ϵ)
by the previous sentence, proving continuity of g ○ f .

Theorem 1.4.6. Let X and Y be metric spaces and let f ∶X → Y be a function. Then the
following are equivalent:

(1) f is continuous;
(2) for any sequence {xn}n∈N in X converging to a point x ∈X, the sequence {f(xn)}n∈N

in Y converges to the point f(x) ∈ Y .

Proof. Let us first show that (1) implies (2), so assume that f is continuous, and let {xn}n∈N
be a sequence in X converging to x ∈X. Fix any ϵ > 0. By continuity of f , we may choose
δ > 0 such that for x′ ∈X with dX(x,x′) < δ, we have dY (f(x), f(x′)) < ϵ. By convergence of
{xn}n∈N to x, we may choose N > 0 such that for n > N , we have d(x,xn) < δ, which implies
d(f(x), f(xn)) < ϵ by the previous sentence. This proves that {f(xn)}n∈N converges to f(x),
as desired.

We now prove the converse, by contrapositive, i.e. we will show that the failure of (1)
implies the failure of (2). So suppose that f is not continuous: this means that for some x ∈X
and for some ϵ > 0, we may choose a sequence of points {xn}n∈N in X with d(x,xn) < 1/n and
d(f(x), f(xn)) ≥ ϵ for all n ∈ N. Then the sequence {xn}n∈N converges to x and the sequence
{f(xn)}n∈N does not converge to f(x), showing that (2) does not hold, as desired.

Example 1.4.7. Let Cr and θ ∶ Cr → [0,2π) be as in Example 1.1.10. With respect to the
planar metric on Cr, the function θ is not continuous, while with respect to the angular
metric, it is continuous (it is even an isometry).

9



LECTURE 2. THE p-ADIC METRIC (SEP 12)

This lecture will be devoted to another example of a metric. As we will see, it is in certain
ways stranger than the examples introduced in the previous lecture, but we will also see a
concrete advantage afforded by allowing this strangeness into our minds.

Notation 2.0.1. Throughout this lecture, p denotes a fixed prime number.

§2.1. The p-adic metric on Q

Definition 2.1.1. For a nonzero rational number x ∈ Q ∖ {0}, its p-adic valuation vp(x) ∈ Z
is the unique integer such that one can write x = pvp(x) a

b
where a, b are integers that are not

divisible by p; its p-adic absolute value is then defined to be

∣x∣p ∶= p−vp(x) ∈ R.

We furthermore set the p-adic absolute value of 0 ∈ Q to be 0, i.e. ∣0∣p ∶= 0.

Example 2.1.2. We have

v2(12) = 2, ∣12∣2 = 1
4 , v2( 1

12) = −2, ∣ 1
12 ∣2 = 4, v3( 5

12) = −1, ∣ 5
12 ∣3 = 3.

Proposition 2.1.3. The p-adic absolute value function ∣ − ∣p ∶ Q → R satisfies the following
properties:

(1) For x ∈ Q ∖ {0}, we have ∣x∣p > 0.
(2) For x, y ∈ Q, we have ∣xy∣p = ∣x∣p∣y∣p.
(3) For x, y ∈ Q, we have ∣x + y∣p ≤max(∣x∣p, ∣y∣p).

Proof. (1) Clear.
(2) If either x or y is equal to zero, then both sides of the equality are 0. In case both x and

y are nonzero, the statement is equivalent to the fact that vp(xy) = vp(x)+ vp(y), which
is easy to see from the definition of vp.

(3) If either x or y is equal to zero, the statement is clear. So suppose x and y are both
nonzero. If x + y = 0, the statement follows from (1). If x + y ≠ 0, the statement is
equivalent to the fact that vp(x + y) ≥ min(vp(x),vp(y)), again easy to see from the
definition of vp.

Definition 2.1.4. The p-adic metric dp ∶ Q ×Q→ R is defined by the formula

dp(x, y) ∶= ∣x − y∣p;

that this is indeed a metric follows from Proposition 2.1.3—in fact, we see that dp satisfies
the following stronger form of the triangle inequality: for x, y, z ∈ Q, we have

(2.1.5) dp(x, z) ≤max(dp(x, y), dp(y, z)).

Some familiar facts about the usual metric on Q (meaning the one induced by the
standard one on R) remain true for the p-adic metric; for instance, we have the following
result.

Proposition 2.1.6. Let f ∶ Q→ Q be a function determined by a polynomial with rational
coefficients. Then f is continuous with respect to the p-adic metric (on both domain and
codomain).

Proof. Homework problem.

Now here are a couple of less familiar feeling phenomena that occur in the p-adic metric.
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Proposition 2.1.7. Let x ∈ Q and let r ∈ R>0, and regard Q as equipped with the p-adic
metric. Then for any y ∈ B(x, r), we have B(x, r) = B(y, r).

Proof. Let y ∈ B(x, r). Then for z ∈ Q, we have dp(x, z) = max(dp(x, y), dp(y, z)). Since
dp(x, y) < r, it follows from (2.1.5) that dp(x, z) < r if and only if dp(y, z) < r.

Remark 2.1.8. Proposition 2.1.7 can be summarized as follows: in the p-adic metric on Q,
any point contained in an open ball is a center of that open ball.

Theorem 2.1.9. Let x ∈ Q ∖ {0}. Then the following conditions are equivalent:
(1) vp(x) ≥ 0;
(2) ∣x∣p ≤ 1;
(3) there is a sequence of integers {xn}n∈N that converges to x with respect to the p-adic

metric.
Moreover, if (1) or (2) is satisfied, then the sequence of integers {xn}n∈N in (3) can be chosen
to furthermore converge to ∞ with respect to the usual metric (i.e. the one restricted from
R).

Proof. The equivalence between (1) and (2) is immediate from the definition of ∣x∣p.
Let us next prove that (3) implies (2). By Proposition 1.4.3, the function ∣− ∣p = dp(0,−) ∶

Q→ R is continuous with respect to the p-adic metric on Q and the usual metric on R, so
applying Theorem 1.4.6, we obtain

∣x∣p = lim
n→∞

∣xn∣p.

For each n ∈ N, we have ∣xn∣p ≤ 1 (equivalently vp(xn) ≥ 0) because xn is an integer. It follows
from the above limit formula then that ∣x∣p ≤ 1.

Finally, we prove that (1) implies (3). If vp(x) ≥ 0, then we may write x = a
b

where a and b
are integers not divisible by p and where a > 0. Now we use some elementary number theory:
we may choose a nonzero integer c that has the same sign as b and such that 1+cp is divisible
by b.2 It follows that 1 + (cp)2n+1 is divisible by b for any n ∈ N, so that xn ∶= a(1+(cp)2n+1

)

b
is

an integer. We claim that this sequence {xn}n∈N does the job. Indeed, it converges to x = a
b

in the p-adic metric because

∣x − xn∣p = ∣
a(c2n+1)(p2n+1)

b
∣
p

≤ p−(2n+1).

It is also straightforward to see that this sequence converges to ∞ in the usual metric.

§2.2. An application

For this section, let us fix a natural number k ∈ N. For any natural number n ≥ k, we have
the binomial coefficient

(n
k
) = n(n − 1)⋯(n − k + 1)

k!
,

2Here are two special cases in which this fact is simple to see:
(1) Suppose b = 2. Then b not being divisible by p means that p is odd. Then we may take c = 1, since 1 + p

will be even, i.e. divisible by b = 2.
(2) Suppose p = 2. Then b not being divisible by p means that b is odd. If b = 1, we can just take c = 1

(divisibility by b = 1 is vacuous). Otherwise, we may write b = 1 + 2c, where c is a nonzero integer with
the same sign as b.

11



which appears as the coefficient of tk in the polynomial (1+t)n. The formula on the right-hand
side makes sense when n is replaced by an arbitrary real number: for any x ∈ R, we set

(x
k
) ∶= x(x − 1)⋯(x − k + 1)

k!
,

which appears as a coefficient of tk in the Taylor series of the function (1 + t)x at t = 0. Note
that this is a polynomial in x with rational coefficients. In particular, if x is itself a rational
number, then so too is (x

k
).

Example 2.2.1. Here are some example values:

x (x2) (x3) (x4) (x5)
1
2 − 1

8
1

16 − 5
128

7
256

1
3 − 1

9
5

81 − 10
243

22
729

2
3 − 1

9
4

81 − 7
243

14
729

1
5 − 2

25
6

125 − 21
625

399
15625

− 3
5

12
25 - 52

125
234
625 − 5382

15625

Do you notice any patterns in the above table? Here is one: the denominators in the first
row are all powers of 2, in the second and third rows all powers of 3, and in the fourth and
fifth rows all power of 5. We now prove, using the p-adic metric, that this is in fact a general
pattern:

Theorem 2.2.2. Let x be a rational number such that vp(x) ≥ 0. Then vp((xk)) ≥ 0.

Proof. By Theorem 2.1.9, we may choose a sequence of integers {xn}n∈N converging to x
with respect to the p-adic metric and to ∞ with respect to the usual metric. Since (x

k
) is a

polynomial function of x, it is continuous with respect to the p-adic metric (Proposition 2.1.6).
Hence, by Theorem 1.4.6, we have

(x
k
) = lim

n→∞
(xn
k
).

On the other hand, by convergence to ∞ with respect to the usual metric, there exists N > 0
such that for all n > N , we have xn ≥ k, and since xn is also an integer, we know that then
(xn

k
) is an integer. Applying the other direction of Theorem 2.1.9, we deduce that vp((xk)) ≥ 0,

as desired.

§2.3. Cauchy sequences and completeness

In this section, we return to the general theory of metric spaces; throughout it, we let X be
an arbitrary metric space.

Definition 2.3.1. We say that a sequence {xn}n∈N of points in X is Cauchy if for all ϵ > 0,
there exists N > 0 such that for m,n > N , we have d(xm, xn) < ϵ.

Proposition 2.3.2. Any convergent sequence in X is Cauchy.

Proof. Let {xn}n∈N be a sequence in X converging to a point x ∈ X. Let ϵ > 0. We may
choose N > 0 such that d(x,xn) < ϵ/2 for all n > N . By the triangle inequality, we find that

d(xm, xn) ≤ d(xm, x) + d(x,xn) < ϵ/2 + ϵ/2 = ϵ

for all m,n > N , proving that the sequence is Cauchy.

Definition 2.3.3. We say that X is complete if every Cauchy sequence in X is convergent.
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Remark 2.3.4. Suppose that X is complete. Let Y be a subset of X, equipped with the
restricted metric. Then Y is complete if and only if it is closed in X.

Example 2.3.5. The set of real numbers R, equipped with its standard metric, is complete.
The subset of rational numbers Q ⊂ R, equipped with the restricted metric, is not complete.

Recall that the difference between Q and R articulated in Example 2.3.5 can be turned
into a construction of the real numbers, as equivalence classes of Cauchy sequences of rational
numbers. In fact, this construction can be carried out for an abitrary metric space:

Construction 2.3.6. Let X̃ denote the set of Cauchy sequences in X. We define an
equivalence relation on X̃ by saying that two Cauchy sequences {xn}n∈N and {x′n}n∈N in X
are equivalent if for all ϵ > 0, there exists N > 0 such that d(xn, x′n) < ϵ for all n > N . Finally,
we define X̂ to be the quotient of X̃ by this equivalence relation, i.e. the set of equivalence
classes of Cauchy sequences in X, and we define the function i ∶X → X̂ to be the one sending
x ∈X to the equivalence class of the constant sequence (x,x, x, . . .).

Theorem 2.3.7. There is a unique metric on X̂ such that the function i ∶ X → X̂ is an
isometry with dense image. Moreover, X̂ is complete with respect to this metric.

Proof. Bonus homework problem.

Definition 2.3.8. We refer to X̂, equipped with the metric of Theorem 2.3.7, as the
completion of X.

§2.4. The p-adic numbers

Definition 2.4.1. The set of p-adic numbers Qp is defined to be completion of Q with
respect to the p-adic metric.

We do not have the time here to delve into any further study of p-adic numbers, but there
is much to learn. Just as with the usual metric and the real numbers, the p-adic numbers
are really a strict enlargement of the rational numbers; in other words, the rational numbers
are not already complete with respect to the p-adic metric. Furthermore, the operations of
addition and multiplication extend from the rational numbers to the p-adic numbers, giving
them the structure of a field. It is a rather different field than the field of real numbers, in
many respects, and it plays its own wonderful role in mathematics.
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LECTURE 3. TOPOLOGICAL SPACES (SEP 17)

§3.1. Open subsets of metric spaces

Throughout this section we let X be a metric space.

Definition 3.1.1. Let U be a subset of X. We say that U is open if for each x ∈ U , there
exists ϵ > 0 such that BX(x, ϵ) ⊆ U .

Example 3.1.2. For any x0 ∈X and r > 0, the open ball BX(x0, r) is an open subset of X.

Example 3.1.3. For any x0 ∈X, the subset X ∖ {x0} of X is open.

Example 3.1.4. The empty subset ∅ and the entirety of X are both open subsets of X.

Nonexample 3.1.5. The subsets {0} and [0,1] of R are closed and not open; the subset
[0,1) of R is neither closed nor open.

Beginning from the basic examples above, we may find more open subsets using the
following result:

Proposition 3.1.6. Let {Ui}i∈I be a set of open subsets of X. Then:
(1) the union ⋃i∈I Ui is an open subset of X;
(2) if I is finite, then the intersection ⋂i∈I Ui is an open subset of X.

Proof. Exercise.

§3.2. Basic notions for metric spaces in terms of open subsets

We continue to with our metric space X.

Theorem 3.2.1. Let Z be a subset of X. Then the following conditions are equivalent:
(1) Z is a closed subset of X;
(2) the complement X ∖Z is an open subset of X.

Proof. Set U ∶=X ∖Z. Suppose that U is open and that Z is not closed. The latter condition
means that we may find a convergent sequence {xn}n∈N in X such that xn ∈ Z for all n ∈ N
and such that its limit x lies in U . The former condition then implies that there exists ϵ > 0
such that BX(x, ϵ) ⊆ U . But by definition of limit, there must exist some n ∈ N such that
xn ∈ BX(x, ϵ) ⊆ U , contradicting that xn ∈ Z.

Now suppose that Z is closed and that U is not open. The latter condition means that
we may find a point x ∈ U and a sequence {xn}n∈N in Z such that d(x,xn) < 1/n. Then the
sequence {xn}n∈N converges in X to x, contradicting the former condition.

Theorem 3.2.2. Let {xn}n∈N be a sequence in X, and let x ∈ X. Then the following
conditions are equivalent:

(1) {xn}n∈N converges to x in X;
(2) for every open subset U ⊆ X that contains x, there exists N > 0 such that xn ∈ U for

all n > N .

Proof. Assume first that (1) holds, and let U be an open subset of X containing x. Since U
is open, there exists ϵ > 0 such that BX(x, ϵ) ⊆ U . Then by definition of convergence, there
exists N > 0 such that xn ∈ BX(x, ϵ) ⊆ U for all n > N , proving (2).

Conversely, if (2) holds, then applying this condition to the special case U = BX(x, ϵ) for
arbitrary ϵ > 0 shows that (1) holds.

14



Theorem 3.2.3. Let Y be another metric space and let f ∶X → Y be a function. Then the
following conditions are equivalent:

(1) f is continuous;
(2) for any open subset U ⊆ Y , the preimage f−1(U) ⊆X is also open.

Proof. Assume first that (1) holds, and let U be an open subset of Y . Let x ∈ f−1(U), so
that f(x) ∈ U . Since U is open, there exists ϵ > 0 such that BY (f(x), ϵ) ⊆ U , and since f is
continuous, there then exists δ > 0 such that

BX(x, δ) ⊆ f−1(BY (f(x), ϵ)) ⊆ f−1(U).

This proves that f−1(U) is open.
Conversely, assume that (2) holds, and let x ∈X and ϵ > 0. Then, invoking Example 3.1.2,

we have that f−1(BY (f(x), ϵ)) is an open subset of X. Since x lies in this subset, there must
exist δ > 0 such that BX(x, δ) ⊆ f−1(BY (f(x), ϵ)). This proves that f is continuous.

§3.3. Topological spaces

Motivated by the discussion so far in this lecture, we now introduce a new abstract notion of
space.

Definition 3.3.1. A topology on a set X is a subset T of the powerset P(X) satisfying the
following properties:
(1) the subsets ∅ and X are contained in T;
(2) for any subset T′ ⊆ T, the union ⋃U∈T′ U is contained in T;
(3) for any finite subset T′ ⊆ T, the intersection ⋂U∈T′ U is contained in T.

Definition 3.3.2. Given a topology T on a set X, we say that a subset U of X is open with
respect to T if U ∈ T.

Definition 3.3.3. A topological space is a pair (X,T) in which X is a set and T is a topology
on X.

Remark 3.3.4. We will allow ourselves the same kind of sloppiness in notation and termi-
nology in the context of topological spaces as we did in that of metric spaces, namely as
follows. Let (X,T) be a topological space. The set X may be called the underlying set of
the topological space. We will often identify the topological space (X,T) with its underlying
set X, leaving the topology implicit. If we have done this and then subsequently need to
invoke the topology in our discussion, we may denote it by TX to be clear, or simply by T if
confusion is unlikely to result. In addition, we will say simply that a subset U ⊆X is open if
it is open with respect to T, i.e. is contained in T (as long as confusion is unlikely to result).

Example 3.3.5. Let (X,d) be a metric space and let T be the set of open subsets of X (as
defined in Definition 3.1.1). Then T is a topology onX, by Example 3.1.4 and Proposition 3.1.6;
we refer to it as the metric topology on X, or the topology induced by d. We may also refer
to the topological space (X,T) as the underlying topological space of the metric space (X,d).
In this situation, the sloppy notation described in Remark 3.3.4 requires even a bit more
care: when we write X, we may be referring to the metric space (X,d), the topological space
(X,T), or the set X.

Definition 3.3.6. Let X be a topological space. We say that X is metrizable if there exists
a metric d on X such that the topology TX is equal to the topology induced by d.

Example 3.3.7. Let X be any set. The discrete topology on X is defined as Tdisc ∶= P(X);
that is, every subset of X is open with respect to the discrete topology. This topology is
always metrizable: it is induced by the discrete metric on X (Example 1.1.6).
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Example 3.3.8. Let X be any set. The indiscrete topology (or trivial topology) on X is
defined as Tindisc ∶= {∅,X} ⊆ P(X); that is, only the empty subset and the entirety of X are
open with respect to the indiscrete topology.

Example 3.3.9. Let X be a set with one element. Then the the discrete topology and the
indiscrete topology on X are the same, and this is the unique topology on X.

Example 3.3.10. Let X = {ζ, η} be a set with two elements as written. Then T ∶=
{∅,{η},X} ⊂ P(X) is a topology on X.

Nonexample 3.3.11. Let X = {α,β, γ} be a set with three elements as written. Then
N ∶= {∅,{α,β},{β, γ},X} ⊂ P(X) is not a topology on X: it does not contain the intersection
{β} = {α,β} ∩ {β, γ}.

Example 3.3.12. Let X be any set. The cofinite topology on X is defined to be the subset
Tcofin ⊆ P(X) consisting of those subsets U of X such that U is empty or the complement
X ∖U is finite.

§3.4. Convergence and closedness in topological spaces

Throughout this section, we let X be a topological space.

Definition 3.4.1. As in the setting of metric spaces, by a point of X we mean an element
of (the underlying set of) X.

Definition 3.4.2. Let x be a point of X. Then a neighborhood of x (in X) is an open subset
U of X that contains x.3

Definition 3.4.3. Let {xn}n∈N be a sequence in X and let x ∈X be a point. We say that
the sequence {xn}n∈N converges to x (in X) if for every neighborhood U of x, there exists
N > 0 such that xn ∈ U for all n > N .

Remark 3.4.4. Suppose that the topology of X is induced by a metric d. We defined earlier
(Definition 1.3.1) what it means for a sequence in X to converge to a point with respect to
the metric, and we have just now defined what it means for a sequence to to converge to a
point with respect to the topology. Theorem 3.2.2 says that these two notions agree.

Example 3.4.5. Suppose that X is equipped with the indiscrete topology. Then for any
sequence {xn}n∈N and any point x ∈X, the sequence {xn}n∈N converges to x. (In particular,
a sequence in a topological space may in general converge to more than one point.)

Definition 3.4.6. We say that a subset Z of X is closed if its complement X ∖Z is open.

Remark 3.4.7. Suppose that the topology of X is induced by a metric d. We defined earlier
(Definition 1.3.6) what it means for a subset Z of X to be closed with respect to the metric.
Theorem 3.2.1 tell us that this is equivalent both to Z being closed with respect to the
topology as just defined above.

Example 3.4.8. Suppose that X = {ζ, η} equipped with the topology {∅,{η},X} (Exam-
ple 3.3.10). Then the one-point subset {ζ} ⊂X is closed, and the one-point subset {η} ⊂X
is not closed.

Definition 3.4.9. We say that X is T1 if for every point x ∈X, the subset {x} ⊂X is closed.

Example 3.4.10. By Example 3.1.3, if X is metrizable, then it is T1.

3This is the definition of “neighborhood” that we will use in this class, and which is used in the book of
Munkres as well. In some other places, this notion is called more specifically an “open neighborhood of x”,
and a “neighborhood of x” refers more generally to any subset of X that contains an open neighborhood of x.
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Example 3.4.11. Suppose that X is equipped with the cofinite topology. Then X is T1.
However, X is not necessarily metrizable (homework problem).

Proposition 3.4.12. Let {Zi}i∈I be a set of closed subsets of X. Then:
(1) the intersection ⋂i∈I Zi is a closed subset of X;
(2) if I is finite, the union ⋃i∈I Zi is a closed subset of X.

Proof. This is immediate from the definition of a topology and the equalities of subsets
X ∖ (⋂i∈I Zi) = ⋃i∈I(X ∖Zi) and X ∖ (⋃i∈I Zi) = ⋂i∈I(X ∖Zi)

Remark 3.4.13. A topology on a set can equivalently be described by specifying the closed
subsets, and then defining a subset to be open if its complement is closed. This procedure
defines a topology exactly when the specified closed subsets satisfy the properties stated in
Proposition 3.4.12, plus the property that the empty subset and the entirety of X are closed.

Example 3.4.14. We could have equivalently described the cofinite topology on a set X as
the one in which a subset is closed exactly when it is finite or the entirety of X.
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LECTURE 4. CONSTRUCTIONS & CONTINUITY I (SEP 19)

§4.1. Bases

Definition 4.1.1. Let X be a set. A basis for a topology on X is a subset B ⊆ P(X)
satisfying the following properties:
(1) for each x ∈X, there exists B ∈ B such that x ∈ B;
(2) for any B1,B2 ∈ B and any x ∈ B1 ∩ B2, there exists B ∈ B such that x ∈ B and

B ⊆ B1 ∩B2.

Lemma 4.1.2. Let B be a basis for a topology on a set X, let B1, . . . ,Bn ∈ B, and let
x ∈ B1 ∩⋯ ∩Bn. Then there exists B ∈ B such that x ∈ B and B ⊆ B1 ∩⋯ ∩Bn.

Proof. We may prove this by induction using property (2) in the definition of a basis.

Proposition 4.1.3. Let X be a set and let B be a basis for a topology on X. Define
TB ⊆ P(X) to consist of those subsets U of X such that for each x ∈ U , there exists B ∈ B
such that x ∈ B and B ⊆ U . Then TB is a topology on X.

Proof. We tautologically have ∅ ∈ TB. That X ∈ TB follows from property (1) in the
definition of a basis. It is straightforward to see from the definition that TB is closed under
the formation of arbitrary unions, and it follows from Lemma 4.1.2 that the same is true for
finite intersections.

Definition 4.1.4. In the situation of Proposition 4.1.3, we refer to TB as the topology
generated by B.

Remark 4.1.5. Let X be a set and let B be a basis for a topology on X. Then a subset
U of X is open with respect to the topology generated by the basis B if and only if it is a
union of elements of B.

Definition 4.1.6. Let X be a set, let T be a topology on X, and let B be a basis for a
topology on X. We say that B is a basis for T if TB = T, i.e. if the topology generated by B

is equal to T.

Example 4.1.7. Let X be a metric space. Then the collection B ⊆ P(X) consisting of the
open balls BX(x, r), for x ∈X and r > 0, is a basis for a topology on (the underlying set of)
X. By definition, the topology generated by this basis is the metric topology on X.

Example 4.1.8. Let B ⊂ P(R) be the subset consisting of the half closed/half open intervals
[a, b), for real numbers a < b. Then B is a basis for a topology on R; we refer to the topology
generated by B as the lower limit topology on R.

Definition 4.1.9. Let X be a set. A subbasis for a topology on X is a subset U ⊆ P(X)
such that for each x ∈X, there exists U ∈ U such that x ∈ U .

Proposition 4.1.10. Let X be a set and let U be a subbasis for a topology on X. Define
BU ⊆ P(X) to consist of those subsets of the form U1 ∩⋯ ∩Un where U1, . . . , Un ∈ U. Then
BU is a basis for a topology on X.

Proof. Note that U ⊆ BU, so that BU satisfies property (1) of a basis follows from the
definition of a subbasis. That it satisfies property (2) follows from the fact that the intersection
of two elements of BU is also an element of BU, by its definition.

Definition 4.1.11. Let X be a set and let U be a subbasis for a topology on X. We define the
topology generated by U to be the topology generated by the basis BU of Proposition 4.1.10.

Remark 4.1.12. Let X be a set and let U be a subbasis for a topology on X. Then a subset
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U of X is open with respect to the topology generated by the subbasis U if and only if it is
a union of finite intersections of elements of U.

§4.2. Continuous maps between topological spaces

Definition 4.2.1. Let X and Y be topological spaces and let f ∶ X → Y be a function
(between their underlying sets). We say that f is continuous if for each open subset U of Y ,
the preimage f−1(U) is an open subset of X.

Definition 4.2.2. In the context of topological spaces, we will use the terminology continuous
map, or sometimes simply map, to mean the same thing as continuous function.

Remark 4.2.3. Let X and Y be metric spaces and let f ∶X → Y be a function. We defined
earlier (Definition 1.4.1) what it means for f to be continuous with respect to the metrics on
X and Y , and we have just defined what it means for f to be continuous with respect to the
topologies on X and Y induced by the metrics. Theorem 3.2.3 says that these two notions
are equivalent.

Example 4.2.4. Let X be a set equipped with the discrete topology and let Y be any
topological space. Then any function f ∶X → Y is continuous.

Example 4.2.5. Let X be any topological space and let Y be a set equipped with the
indiscrete topology. Then any function f ∶X → Y is continuous.

Proposition 4.2.6. Let X, Y , and Z be topological spaces and let f ∶X → Y and g ∶ Y → Z
be continuous functions. Then the composition g ○ f ∶X → Z is also continuous.

Proof. This is immediate from the definition of continuity and the fact that (g ○ f)−1(U) =
f−1(g−1(U)) for any subset U of Z.

Example 4.2.7. Let X and Y be topological spaces, let y be a point in Y , and let h ∶X → Y
be the constant function with value y, i.e. we have h(x) = y for all x ∈X. Then h is continuous.
We could check this directly using the definition, but we can also deduce this from what we
have already observed above, as follows.

First note that we may write the function h as the composite of the constant function
f ∶ X → {y} (i.e. the unique function of this type) and the inclusion function g ∶ {y} → Y .
Recall that the one element set {y} has a unique topology, which is both the discrete topology
and the indiscrete topology (Example 3.3.9). Regarding {y} as equipped with this topology, it
follows from Example 4.2.5 that f is continuous and from Example 4.2.4 that g is continuous.
We then deduce that h = g ○ f is continuous by applying Proposition 4.2.6.

Proposition 4.2.8. Let X and Y be topological spaces and let f ∶ X → Y be a function.
Suppose that the topology on Y is the one generated by a subbasis U. Then f is continuous if
and only if f−1(U) is an open subset of X for each U ∈ U.

Proof. The “only if” direction follows from the fact that the elements of U are open with
respect to the topology generated by U. The “if” direction follows from Remark 4.1.12 and
the fact that f−1 ∶ P(Y )→ P(X) commutes with unions and intersections.

§4.3. Open maps and homeomorphisms

Definition 4.3.1. Let X and Y be topological spaces and let f ∶X → Y be a function. We
say that f is an open map if f is continuous and moreover, for any open subset U of X, the
image f(U) is an open subset of Y .

Definition 4.3.2. Let X and Y be topological spaces and let f ∶ X → Y be a function.
We say that f is a homeomorphism if it is bijective, continuous, and moreover the inverse
function f−1 ∶ Y →X is also continuous.
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Remark 4.3.3. Let X and Y be topological spaces and let f ∶ X → Y be a continuous
bijection. Then f is a homeomorphism if and only if f is an open map.

Definition 4.3.4. Let X and Y be topological spaces. We say that X is homeomorphic to
Y if there exists a homeomorphism f ∶X → Y .

Remark 4.3.5. The relation of one topological space being homeomorphic to another is an
equivalence relation:
(1) any topological space X is homeomorphic to itself, because the identity function

idX ∶X →X is a homeomorphism;
(2) for X,Y topological spaces, if X is homeomorphic to Y , then Y is homeomorphic to

X, because if f ∶X → Y is a homeomorphism, then so is its inverse f−1 ∶ Y →X;
(3) for topological spaces X,Y,Z, if X is homeomorphic to Y and Y is homeomorphic

to Z, then X is homeomorphic to Z, because if f ∶ X → Y is a homeomorphism and
g ∶ Y → Z is a homeomorphism, then so is the composition g ○ f ∶X → Z.

Example 4.3.6. The open intervals (0,1) and (0,2) are homeomorphic (with respect to
their standard metric topologies).

Example 4.3.7. Let C ∶= {(x, y) ∈ R2 ∶ x2 + y2 = 1} and endow this with the topology
induced by the planar metric. Equip [0,2π) with its standard metric topology. Then the
function f ∶ [0,2π)→ C defined by f(t) ∶= (cos(t), sin(t)) is a continuous bijection, but it is
not a homeomorphism: the inverse function θ ∶ C → [0,2π) is not continuous.

Homeomorphism is a fundamental concept. It is a precise expression of what it means for
two topological spaces to “be the same (shape)”.

Definition 4.3.8. We say that a property of topological spaces is topologically invariant if,
given topological spaces X and Y that are homeomorphic, one of them satisfies the property
if and only if the other one does.

We will study several examples of topologically invariant properties as we move forward
in the course. By doing so, we will eventually be able to prove for example that, with
notation as in Example 4.3.7, there exists no homeomorphism between C and [0,2π), a
precise expression of the idea that they have different shape.
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LECTURE 5. CONSTRUCTIONS & CONTINUITY II (SEP 24)

§5.1. Comparing topologies

Definition 5.1.1. Let X be a set and and let T1 and T2 be two topologies on X. If T1 ⊆ T2,
then we say that T1 is coarser than T2 and (equivalently) that T2 is finer than T1.

Example 5.1.2. Let X be a set. Then the discrete topology is the finest topology on X
and the indiscrete topology is the coarsest topology on X.

Example 5.1.3. The lower limit topology on R is finer than the standard topology on R:
this follows from the fact that an open interval (a, b) can be written as the union over all
ϵ > 0 of the half closed/half open interals [a + ϵ, b).

Proposition 5.1.4. Let X be a set and let U be a subbasis for a topology on X. Then the
topology generated by U is the coarsest topology on X that contains U.

Proof. The topology TU generated by U consists of unions of finite intersections of elements
of U. Since a topology must be closed under forming finite intersections and unions, if we
have one on X that contains U, it must also contain TU.

§5.2. Defining topologies by continuity desiderata

Theorem 5.2.1. Let X be a set, let {Xα}α∈A be a collection of topological spaces, and
suppose given a collection of functions {fα ∶X →Xα}α∈A. Then:

(1) There exists a coarsest topology T on X for which all of the functions fα are continuous.
(2) For any other topological space W , a function e ∶ W → X is continuous with respect

to this coarsest topology T if and only if all of the compositions fα ○ e ∶W → Xα are
continuous.

Proof. Define U ⊆ P(X) to consist of the subsets f−1
α (Uα) where α ∈ A and Uα is an open

subset of Xα. Then U is a subbasis for a topology on X, and we let T ∶= TU be the topology
generated by this subbasis. Any topology for which the functions fα are continuous must
contain U, by definition of continuity, and so the fact that T is the coarsest such topology
follows from Proposition 5.1.4, proving statement (1). Statement (2) then follows from this
definition of T together with Proposition 4.2.8.

Remark 5.2.2. In the proof of Theorem 5.2.1, we could alter the definition of the subbasis
U by restricting the subsets Uα ⊆Xα to be elements of a subbasis generating the topology of
Xα, and this would not change the topology T generated by it.

Theorem 5.2.3. Let X be a set, let {Xα}α∈A be a collection of topological spaces, and
suppose given a collection of functions {gα ∶Xα →X}α∈A. Then:

(1) There exists a finest topology T on X for which all of the functions gα are continuous.
(2) For any other topological space W , a function h ∶ X →W is continuous with respect

to this finest topology T if and only if all of the compositions h ○ gα ∶ Xα → W are
continuous.

Proof. Define T ⊆ P(X) to consist of those subsets U such that g−1
α (U) is open in Xα for

each α ∈ A. This is a topology satisfying statement (1), and statement (2) is straightforward
to check from this definition.
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§5.3. Products

Construction 5.3.1. Let {Xα}α∈A be a set of topological spaces and let X denote the
product set ∏α∈AXα. For each α ∈ A, let pα ∶X →Xi denote the projection function onto
the factor Xα. The product topology on X =∏α∈AXα is defined to be the coarsest topology
such that all of the functions pα are continuous. This exists by Theorem 5.2.1, and by the
proof of that result, we see the product topology has a subbasis given by the subsets p−1

α (Uα)
for i ∈ I and Uα is an open subset of Xα (or, by Remark 5.2.2, Uα can be restricted to the
elements of a subbasis generating the topology of Xα).

Proposition 5.3.2. Let {Xα}α∈A be a set of topological spaces, let X be the product ∏α∈AXα,
and for each α ∈ A, let pα ∶X →Xα denote the projection function. Let W be any topological
space and let f ∶W →X be any function. Then f is continuous with respect to the product
topology on X if and only if all of the component functions fα ∶= pα ○ f ∶ W → Xα are
continuous.

Proof. This is a special case of Theorem 5.2.1(2).

Proposition 5.3.3. Let X1, . . . ,Xn be metric spaces, let 1 ≤ q ≤∞, and let X be the product
∏ni=1Xi, equipped with the ℓq product metric. Then the metric topology on X is equal to the
product topology on X (where in the latter we regard each Xi as equipped with its metric
topology).

Proof. By one of the homework problems, the topology induced by the ℓq product metric
is independent of q. Using this fact, we may assume that q =∞. Now, the metric topology
is generated by the basis consisting of open balls BX(x, r) where x = (x1, . . . , xn) ∈ X and
r > 0. By definition of the ℓ∞ product metric, we have BX(x, r) =∏ni=1 BXi(xi, r). We may
rewrite this product as the finite intersection ⋂ni=1 p

−1
i (BXi(xi, r)), where pi ∶X →Xi is the

projection function, and these intersections comprise a basis for the product topology.

Example 5.3.4. Equip R with its standard metric topology. There are many choices of
an induced product metric on Rn =∏ni=1 R (for n ≥ 2). However, they all induce the same
topology, namely the product topology. In the remainder of the course, we will refer to this
as the standard topology on Rn and by default consider Rn as equipped with this topology.

Example 5.3.5. The function Rm×Rn → Rm+n sending ((x1, . . . , xm), (xm+1, . . . , xm+n))↦
(x1, . . . , xm+n) is a homeomorphism.

§5.4. Subspaces

Construction 5.4.1. Let X be a topological space and let Y be a subset of X. The subspace
topology on Y is defined to be the coarsest topology on Y such that the inclusion function
i ∶ Y →X is continuous. This exists by Theorem 5.2.1, and by examining the proof of that
result, we see that a subset V of Y is open with respect to the subspace topology if and only
if we may write V = i−1(U) = U ∩ Y for an open subset U of X.

Remark 5.4.2. In the situation of Construction 5.4.1, if U is a subbasis generating the
topology on X, then the subsets V = U ∩ Y ⊆ Y for U ∈ U form a subbasis for the subspace
topology on Y (this is a special case of Remark 5.2.2).

Proposition 5.4.3. Let X be a topological space and let Y be a subspace of X; let i ∶ Y →X
denote the inclusion function. Let W be any topological space and let f ∶ W → Y be any
function. Then f is continuous if and only if i ○ f ∶W →X is continuous.

Proof. This is a special case of Theorem 5.2.1(2).

Example 5.4.4. Equip R with its standard (metric) topology. Let Y ∶= [0, 1] ⊂ R, equipped
with the subspace topology. Then ( 1

2 , 1] = [0, 1] ∩ (
1
2 ,

3
2) is an open subset of Y (though it is
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not an open subset of R).

Remark 5.4.5. From now on, we will often implicitly equip subsets of topological spaces
with the subspace topology. In particular, we will by default regard subsets of Rn as equipped
with the subspace topology with respect to the standard topology on Rn.

Proposition 5.4.6. Let X be a metric space and let Y be a subset of X. Then, regarding X
as equipped with the metric topology, the subspace topology on Y is the same as the topology
induced by the restricted metric on Y (Construction 1.1.9).

Proof. By definition, the metric topologies on X and Y are generated by the bases consisting
of the open balls in each. The claim thus follows from Remark 5.4.2 and the fact that
BY (y, r) = Y ∩BX(y, r) for any y ∈ Y and r > 0.

Definition 5.4.7. Let X be a topological space. By a subspace of X, we mean a topological
space obtained by equipping a subset Y of X with the subspace topology.

Definition 5.4.8. Let X and Y be topological spaces and let f ∶ X → Y be a function.
Let f(X) be the image of f , and equip it with the subspace topology. We say that f is an
embedding if it is a homeomorphism when regarded as a function X → f(X).

Remark 5.4.9. Let i ∶ X → Y and i′ ∶ X ′ → Y ′ be two embeddings of topological spaces.
Then, equipping the products X ×X ′ and Y × Y ′ with the product topologies, the product
function i × i′ ∶X ×X ′ → Y × Y ′ is also an embedding.

Example 5.4.10. Consider the continuous function f ∶ R4 → R3 given by the formula

f(x, y, z, t) ∶= ((2 + t)x, (2 + t)y, z).

Let C ∶= {(x, y) ∈ R2 ∶ x2 + y2 = 1} ⊆ R2 and let T ∶= {(x, y, z) ∈ R3 ∶ (
√
x2 + y2 − 2)2 + z2 =

1} ⊆ R3.
Combining Example 5.3.5 and Remark 5.4.9, we have an embedding i ∶ C×C → R4 (where

C×C is equipped with the product topology). We claim that the composition f ○i ∶ C×C → R3

is also an embedding, with image given by T . It is straightforward to check that it is injective
with this image, and it is continuous because it is a composition of continuous functions. One
can try to check directly that it is indeed an embedding, i.e. that it defines a homeomorphism
C ×C → T , but we will leave this unchecked for now; we will learn a bit later in the course a
way to check this less directly.

Example 5.4.11. Let C and T be as in Example 5.4.10. There are many embeddings
i ∶ C → C × C. For instance, if we fix any point c0 ∈ C, we could define i(c) ∶= (c, c0)
or i(c) ∶= (c0, c), and this would define an embedding. If we accept the claim made in
Example 5.4.10 that there is a homeomorphism C ×C → T , it follows that there are many
embeddings C → T .

Here are two things to take away from the above examples: one topological space can
embed into many different topological spaces, and it can even have many different embeddings
into a single topological space. One of the shifts in perspective that the abstract theory
of topological spaces allows us is that of studying shapes/spaces “intrinsically”, namely in
terms of their open subsets, without having to keep in mind any fixed embedding of them
into, say, Rn.
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LECTURE 6. CONSTRUCTIONS & CONTINUITY III (SEP 26)

§6.1. Disjoint unions

Construction 6.1.1. Let {Xα}α∈A be a collection of topological spaces and let X denote
the disjoint union set ∐α∈AXα. For each α ∈ A, let iα ∶Xα →X denote the inclusion function
of the factor Xα. The disjoint union topology on X = ∐α∈AXα is defined to be the finest
topology such that all of the functions iα are continuous. This exists by Theorem 5.2.3, and
by the proof of that result, we see that a subset U of X is open with respect to the disjoint
union if and only if for each α ∈ A, the subset i−1

α (U) = U ∩Xα is an open subset of Xα.

Proposition 6.1.2. Let {Xα}α∈A be a set of topological space, let X be the disjoint union
∐α∈AXα, and for each α ∈ A, let iα ∶ Xα → X denote the inclusion function. Let W
be any topological space and let f ∶ X → W be any function. Then f is continuous with
respect to the disjoint union topology on X if and only if all of the restricted functions
f ∣Xα = f ○ iα ∶Xα →W are continuous.

Proof. This is a special case of Theorem 5.2.3(2).

Example 6.1.3. Let I1, I2 denote two copies of [0, 1] ⊂ R. For k ∈ {1, 2}, define fk, gk ∶ Ik → R

be the functions defined by fk(t) ∶= k + t and gk(t) ∶= 2k + t. All of the functions f1, f2, g1, g2
are embeddings.

Let f ∶ I1 ∐ I2 → R be the function whose restriction to Ik is fk and let g ∶ I1 ∐ I2 → R

be the function whose restriction to Ik is gk. By Proposition 6.1.2, f and g are continuous.
Moreover, g is an embedding, while f is not an embedding.

§6.2. Quotients

Construction 6.2.1. Let X be a topological space, let Y be a set, and let p ∶ X → Y be
a surjective function. The quotient topology on Y is defined to be the finest topology on
Y such that the function p ∶ X → Y is continuous. This exists by Theorem 5.2.3, and by
examining the proof of that result, we see that a subset U of Y is open with respect to the
quotient topology if and only if its preimage p−1(U) is an open subset of X.

Proposition 6.2.2. Let X be a topological space, let Y be a set, and let p ∶ X → Y be a
surjective function. Let W be any topological space and let f ∶ Y →W be any function. Then
f is continuous if and only if f ○ p ∶X →W is continuous.

Proof. This is a special case of Theorem 5.2.3(2).

Remark 6.2.3. Note that, unlike with subsets and products, we had no analogue of this
quotient construction in the setting of metric spaces. So here we are encountering a new
flexibility for making constructions in the setting of topological spaces.

Definition 6.2.4. Let p ∶X → Y be a function between topological spaces. We say that p is
a quotient map if it is surjective and the topology on Y is equal to the quotient topology:
that is, if a subset U ⊆ Y is open if and only if p−1(U) is an open subset of X. (Note that if
p is a quotient map, then in particular it is continuous.)

Proposition 6.2.5. Let p ∶X → Y be a surjective open map between topological spaces. Then
p is a quotient map.

Proof. Let U be a subset of Y . If U is open, then p−1(U) is open, because p is continuous (this
is part of the definition of an open map). Conversely if p−1(U) is open, then U = p(p−1(U))
(the equality holding because p is surjective) is open since p is an open map.
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Example 6.2.6. Let I ∶= [0,1] ⊂ R. Choose any point (x0, y0) ∈ R2 and any real number
r > 0, and let C ⊂ R2 be the circle of radius r centered at c. Let p ∶ I → C be the function
defined by p(t) ∶= (x0+r cos(2πt), y0+r sin(2πt)). This is a continuous and surjective function.
Let’s show that it is in fact a quotient map.

Let U be a subset of C such that p−1(U) is open. We need to prove that U is open. We
will do this by checking that, for each x ∈ U , there is a neighborhood Ux of x in C that is
contained in U (this suffices because then we may write U = ⋃x∈U Ux, and hence U is open
as it is a union of open subsets). There are two cases:
(1) Suppose x = p(t) for t ∈ (0, 1). Then t ∈ p−1(U), and since p−1(U) is open in [0, 1], there

must be some open interval (t − ϵ, t + ϵ) ⊂ (0, 1) contained in p−1(U). The image of this
open interval under the function p is a neighborhood Ux of x in C contained in U .

(2) Otherwise, we have x = p(0) = p(1). Then 0 ∈ p−1(U) and 1 ∈ p−1(U), and so p−1(U)
being open in [0,1] means that there must be intervals [0, ϵ) and (1 − ϵ,1] contained
in p−1(U). The image of the union of these two intervals under the function p is a
neighborhood Ux of x in C contained in U .

This proves that p is a quotient map.
On the other hand, note that p is not an open map. For example, [0, 1

2) is an open subset
of I, but its image under p is not an open subset of C.

Example 6.2.7. Letting p ∶ I → C be as in Example 6.2.6. Then the product function
p × p ∶ I × I → C ×C is also a quotient map. We could check this directly in a similar, but
slightly more complicated, fashion as in Example 6.2.6. In a future lecture we will learn
another way to prove this less directly (which will also apply in Example 6.2.6).

Construction 6.2.8. Let X be a set and let ∼ be an equivalence relation on X. Then
we may form the associated quotient set, i.e. the set of equivalence classes, X/∼, and this
comes with a (surjective) quotient function q ∶X →X/∼ sending an element of x ∈X to its
equivalence class.

If X comes equipped with a topology, then we may equip X/∼ with the quotient topology;
when we do so, we will refer to X/∼ as the quotient space of X by ∼.

Example 6.2.9. Let X be a topological space and let A be a subset of X. Then we may
define an equivalence relation ∼ on X as follows: for x,x′ ∈X, we have x ∼ x′ if and only if
x = x′ or x,x′ ∈ A. In this case, we denote the quotient space of X by ∼ by X/A and refer to
it as the quotient space of X by A.

Proposition 6.2.10. Let p ∶ X → Y be a quotient map of topological space. Let ∼ be the
equivalence relation on X defined by x ∼ x′ ⇐⇒ p(x) = p(x′), and let q ∶ X → X/∼ denote
the associated quotient map. Then there is a unique homeomorphism f ∶X/∼→ Y such that
f ○ q = p.

Proof. Firstly, there is a unique function f ∶X/∼→ Y such that f ○q = p: this equation means
that f must send the equivalence class q(x) of x ∈X to p(x) ∈ Y , and this is well-defined by
the definition of the equivalence relation ∼. It is also easy to see from the definition of ∼ that
this function f is bijective. Finally, that f is in fact a homeomorphism follows from the fact
that both X/∼ and Y are equipped with the quotient topologies.

Example 6.2.11. Let I and C be as in Example 6.2.6. It follows from the discussion there
and Proposition 6.2.10 that there is a homeomorphism I/{0,1}→ C (where I/{0,1} is the
quotient space of I by the subset {0,1} ⊂ I, as defined in Example 6.2.9).

Example 6.2.12. We now continue from Example 6.2.7: we have a quotient map I×I → C×C,
so Proposition 6.2.10 tells us that C ×C is homeomorphic to the quotient of I ×I by a certain
equivalence relation. We can describe this equivalence relation as follows: it is generated by
the relations (0, t) ∼ (1, t) and (t, 0) ∼ (t, 1) for t ∈ I (meaning it is is the minimal equivalence
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relation that includes these relations).

Example 6.2.13. Again letting I ∶= [0,1] ⊂ R, the Klein bottle K may be defined as the
quotient space of I × I by the equivalence relation generated by the relations (0, t) ∼ (1, 1− t)
and (t,0) ∼ (t,1) for t ∈ I. There exist embeddings K → R4, but there exist no embeddings
K → R3 (proving this latter fact is outside the scope of this course however).

Example 6.2.14. Let S ∶= {(x, y, z) ∈ R3 ∶ x2 + y2 + z2 = 1} ⊂ R3. Let I ∶= [0,1] ⊂ R, and let
A ⊂ I × I consist of the points on “the boundary”, i.e. those points (x, y) such that x ∈ {0, 1}
or y ∈ {0,1}. Then the quotient space (I × I)/A is homeomorphic to the sphere S.

§6.3. Gluings

Construction 6.3.1. Let A, X, and Y be topological spaces and let i ∶ A→X and j ∶ A→ Y
be embeddings. Then the gluing of X and Y along the embeddings i and j of A, denoted
X ∐A Y , is defined to be the quotient space of the disjoint union X ∐ Y by the equivalence
relation generated by the relation i(a) ∼ j(a) for a ∈ A. (We note that the the notation
X ∐A Y is sloppy, as it leaves the embeddings i and j implicit, even though the construction
depends on these.)

Example 6.3.2. Let D ∶= {(x, y) ∈ R2 ∶ x2 + y2 ≤ 1} ⊂ R2 and let C ∶= {(x, y) ∈ R2 ∶ x2 + y2 =
1}. We can form the gluing D∐CD of two copies of D along the inclusion of C into each copy
of D. This gluing is homeomorphic to the sphere S ∶= {(x, y, z) ∈ R3 ∶ x2 + y2 + z2 = 1} ⊂ R3.

Example 6.3.3. We can form the gluing R ∐{0} R of two copies of R along the inclusion
of the origin {0} into each copy of R. This gluing is homeomorphic to the subspace of the
plane given by the union of the two axes, i.e. X ∶= {(x, y) ∈ R2 ∶ x = 0 or y = 0}.

Example 6.3.4. We can form the gluing R ∐R∖{0} R of two copies of R along the inclusion
of the complement of the origin R ∖ {0} into each copy of R. This gluing is not Hausdorff,
and hence cannot be embedded in any Euclidean space.
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LECTURE 7. COMPACTNESS I (OCT 1)

Consider the subspaces [0,1] ⊂ R and (0,1) ⊂ R. They certainly look different as subspaces
of R: the former is closed and not open, and the latter is open and not closed. But what if
we ignore their embeddings in R; are they different as topological spaces? That is, is there
or is there not a homeomorphism between them?

We can show that there is in fact no homeomorphism between [0,1] and (0,1) by
exhibiting a topologically invariant property satisfied by one and not the other. Recall the
following basic results from real analysis:

Theorem 7.0.1. [Bolzano–Weierstrass] For any real numbers a < b, any sequence in [a, b]
has a convergent subsequence.

Theorem 7.0.2. [Extreme value theorem] For any real numbers a < b, any continuous
function f ∶ [a, b]→ R is bounded, and moreover achieves maximum and minimum values.

Neither of these results is true if we replace the closed interval [a, b] with the open interval
(a, b). Given our formulations of convergence of sequences and continuity in the language
of open sets, these results articulate topologically invariant properties of [a, b] that are not
satisfied by (a, b), in particular showing that they are not homeomorphic.

In this lecture, we will formulate a more abstract topologically invariant property of
topological spaces, which is closely related to the properties appearing in the above two
theorems, but which is defined purely in terms of open subsets, rather than invoking sequences
or functions to R, and which turns out to be useful in broader generality.

§7.1. Definition and examples

Definition 7.1.1. Let X be a set, let Y be a subset of X, and let U ⊆ P(X) be a collection
of subsets of X. We say that U covers Y if Y ⊆ ⋃U∈UU . In particular, we say that U covers
X if X = ⋃U∈UU .

Definition 7.1.2. Let X be a topological space. An open cover of X is a collection U ⊆ TX
of open subsets of X that covers X, i.e. such that X = ⋃U∈UU . Given an open cover U of X,
a subcover of U is a subset U′ ⊆ U that also covers X. We say that an open cover U of X is
finite if it is has finitely many elements.

Definition 7.1.3. Let X be a topological space. We say that X is compact if for any open
cover U of X, there is a finite subcover U′ of U.

Example 7.1.4. Let X be a topological space with finitely many points. Then X is compact.

Nonexample 7.1.5. Let X be an infinite set equipped with the discrete topology. Then X
is not compact: the open cover U = {{x}}x∈X does not have any finite subcover.

Nonexample 7.1.6. The set of real numbers R (equipped with its standard topology) is not
compact: for instance, the open cover U = {(−n,n)}n∈N does not have any finite subcover.

For any real numbers a < b, the subspace (a, b) ⊂ R is also not compact: for instance, the
open cover U = {(a + 1

n
, b)}n≥1 does not have any finite subcover.

In the setting of metric spaces, compactness can be related to the property appearing in
Theorem 7.0.1.

Proposition 7.1.7. Let X be a metric space whose underlying topological space is compact.
Then any sequence in X has a convergent subsequence.

Proof. Let {xn}n∈N be a sequence in X. Suppose for the sake of contradiction that no
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subsequence of it is convergent.
Now, we first claim that for every x ∈X, there is a neighborhood Ux of x that contains

xn for only finitely many n ∈ N. We prove this claim by contradiction as well. Suppose the
claim is not true for some x ∈ X. Set n0 ∶= 0 and let us inductively choose integers nk for
k ≥ 1 as follows: by hypothesis, the neighborhood BX(x, 1

k
) contains infinitely many points

in the sequence {xn}, so we may choose nk so that nk > nk−1 and xnk
∈ BX(x, 1

k
). Then this

subsequence {xnk
}k∈N converges to x, contradicting our assumption above.

So now choose a neighborhood Ux of each point x ∈X as in the previous paragraph. Then
U ∶= {Ux}x∈X is an open cover of X, and since X is compact, it must admit a finite subcover
U′ = {U1, . . . , Um} ⊆ U. Each element of the subcover Ui was chosen so that it contains only
finitely many points in the sequence {xn}. But they also cover the entirety of X, so we
deduce that the sequence {xn} only takes on finitely many values. It follows that it has
a subsequence that is constant, and hence necessarily convergent, again contradicting our
assumption.

Remark 7.1.8. In fact, the converse of Proposition 7.1.7 holds as well: given a metric space
X in which every sequence has a convergent subsequence, X is compact as a topological
space. Proving this is more complicated and we will not do so here, but you can take a look
at the textbook, or try to prove it yourself, if you are interested.

If we accept Remark 7.1.8, i.e. that the converse of Proposition 7.1.7 holds, then The-
orem 7.0.1 implies that a closed interval [a, b] ⊂ R is compact. We will now prove this
directly.

Theorem 7.1.9. For any real numbers a < b, the closed interval [a, b] is compact.

Proof. Let U be an open cover of [a, b]. Define C ⊆ [a, b] to be the subset consisting of
those c ∈ [a, b] for which [a, c] is covered by finitely many elements of U (that is, for which
there exist U1, . . . , Un ∈ U such that [a, c] ⊆ ⋃ni=1Ui). What we need to prove is that b ∈ C.

We begin by observing that a ∈ C: by definition of an open cover, there must exist U ∈ U
such that a ∈ U , and then the single element U covers {a} = [a, a]. Thus, C is nonempty, and
hence it has a least upper bound d ∶= sup(C) ∈ [a, b]. To finish the proof, we must show that
d ∈ C and that d = b.

We first show that d ∈ C. Suppose this is not the case. We noted already that a ∈ C, so
we must have d > a. Now, since U is an open cover, we may choose U0 ∈ U such that d ∈ U0,
and by definition of the topology on [a, b], we can then choose δ > 0 such that (d − δ, d] ⊆ U0.
Since d is the least upper bound of C, there exists c ∈ (d − δ, d] ∩C. By definition of C, this
means that we may choose U1, . . . , Un ∈ U which cover [a, c]. Then U0, U1, . . . , Un cover [a, d],
proving that d ∈ C.

We now show that d = b. Suppose not, so that d < b. By the previous paragraph, we have
U0, U1, . . . , Un ∈ U covering [a, d] with d ∈ U0. By definition of the topology on [a, b], we can
choose ϵ > 0 such that (d− ϵ, d+ ϵ) ⊂ U0. But then [a, d+ ϵ

2 ] is also covered by U0, U1, . . . , Un,
which implies that d + ϵ

2 ∈ C. This contradicts that d is an upper bound of C.

Remark 7.1.10. Combining Proposition 7.1.7 and Theorem 7.1.9 gives an alternative proof
of Theorem 7.0.1.

§7.2. Basic properties of compactness

Proposition 7.2.1. Let f ∶X → Y be a continuous function between topological spaces, and
suppose that X is compact. Then the subspace f(X) of Y is a compact topological space.

Proof. By definition of the subspace topology, the function f remains continuous when
regarded as a function with codomain f(X). Thus, we are free to replace Y with f(X) and
assume that f is surjective.
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Now let V be an open cover of Y . We need to find a finite subcover of V. Let U ∶= f−1(V):
this is the subset of TX consisting of f−1(V ) for V ∈ V. Then U is an open cover of X: for any
x ∈X, there exists V ∈ V such that f(x) ∈ V , because V covers Y , and hence x ∈ f−1(V ) ∈ U.

Then, since X is compact, there exists a finite subcover U′ ⊆ U. By definition of U, we have
U′ = {f−1(V1), . . . , f−1(Vn)} for some V1, . . . , Vn ∈ V. We claim that V′ ∶= {V1, . . . , Vn} ⊆ V
covers Y , so is a finite subcover of V. Let y ∈ Y . We may choose x ∈ X such that f(x) = y,
by our assumption that f is surjective. Since U′ covers X, we have x ∈ f−1(Vi) for some
1 ≤ i ≤ n, and this implies y = f(x) ∈ Vi, as desired.

Example 7.2.2. Let f ∶ X → Y be a quotient map of topological spaces. Then if X is
compact, so is Y . For instance, it follows from Theorem 7.1.9 that the quotient space
[0,1]/{0,1} is compact.

Corollary 7.2.3. Let X and Y be homeomorphic topological spaces. Then X is compact if
and only if Y is compact.

Proof. Being homeomorphic means that we have continuous bijections f ∶ X → Y and
f−1 ∶ Y →X. So the claim follows immediately from Proposition 7.2.1.

What Corollary 7.2.3 says, in other words, is that compactness is a topologically invariant
property of topological spaces (Definition 4.3.8).

Example 7.2.4. Since (0,1) is not compact (Nonexample 7.1.6) and [0,1] is compact
(Theorem 7.1.9), these two topological spaces are not homeomorphic.

Let’s now discuss compactness of subspaces of a given topological space.

Lemma 7.2.5. Let X be a topological space and let Y be a subspace of X. Then the following
conditions are equivalent:

(1) Y is compact;
(2) for any collection U ⊆ TX of open subsets of X that covers Y , there exists a finite

subcollection U′ ⊆ U that also covers Y .

Proof. Assume first that (1) holds, and let U be as in (2). Define V ⊆ TY to consist of the
open subsets U ∩ Y ⊆ Y for U ∈ U (these are open by definition of the subspace topology).
Since Y is compact, there exists a finite subset V′ ⊆ V that covers Y , and by definition of V,
we may write V′ = {U1 ∩ Y, . . . , Un ∩ Y } for some U1, . . . , Un ∈ U. Then U′ ∶= {U1, . . . , Un} is
a finite subcollection of U that covers Y .

We now show the converse, so assume (2) holds, and let V be an open cover of Y . We
need to find a finite subcover of V. Let U ⊆ TX consist of those open subsets of X such that
U ∩ Y ∈ V. By definition of the subspace topology, for each V ∈ V, there exists U ∈ U such
that V = U ∩Y . So V being an open cover of Y implies that U covers Y . By hypothesis, there
is a finite subcollection U′ ⊆ U that also covers Y . Define V′ ⊆ V to consist of the subsets
U ∩ Y for U ∈ U′ (any such subset lies in V since U′ ⊆ U). Since U′ covers Y , so does V′, and
since U′ is finite, so is V′.

The following result relates compactness and closedness for subspaces.

Theorem 7.2.6. Let X be a topological space and let Y be a subspace of X. Then the
following statements hold.

(1) Suppose that X is compact and that Y is closed in X. Then Y is compact.
(2) Suppose that X is Hausdorff and that Y is compact. Then Y is closed in X.

Proof. (1) Let U be a collection of open subsets of X that covers Y . By Lemma 7.2.5,
it suffices to show that there is a finite subcollection of U that also covers Y . Let
U ∶= U∪ {X ∖ Y } (note that X ∖ Y is open in X, since Y is assumed to be closed). Then
U covers X (any point in X either lies in Y , in which case it is covered by U, or it lies
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in X ∖ Y ). Since X is compact, there exists a finite subcover U
′

of U. We may then take
U′ ∶= U′ ∩U (i.e. U′ is obtained from U

′
by removing the element X ∖Y if it is contained

in the latter) and this is a finite subcollection of U covering Y .
(2) We need to show that X ∖Y is open. Letting x ∈X ∖Y , it suffices to show that there is a

neighborhood of x in X that is contained in X ∖Y . Since X is Hausdorff, we may choose
for each y ∈ Y a neighborhood Ux,y of x in X and a neighborhood Vx,y of y in X that
are disjoint. Then the collection of open subsets {Vx,y}y∈Y covers Y , so by Lemma 7.2.5,
Y being compact implies that there exists a finite subcollection Vx,y1 , . . . , Vx,yn that
still cover Y . Let U ∶= Ux,y1 ∩⋯ ∩Ux,yn . Then U is a neighborhood of x in X, and it is
disjoint of each of Vx,y1 , . . . , Vx,yn , and since these latter sets cover Y , this implies that
U is disjoint from Y , i.e. is contained in X ∖ Y , as desired.
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LECTURE 8. COMPACTNESS II (OCT 3)

§8.1. A homeomorphism criterion

Theorem 8.1.1. Let f ∶ X → Y be a continuous bijection between topological spaces, and
suppose that X is compact and Y is Hausdorff. Then f is a homeomorphism.

Proof. We need to show that for U an open subset of X, its image f(U) is an open subset
of Y . Since f is a bijection, we have that Y ∖ f(U) = f(X ∖ U). Since X is compact and
X ∖U is closed in X, we have by Theorem 7.2.6(1) that X ∖U is compact (when given the
subspace topology). By Proposition 7.2.1, it follows that its image Y ∖ f(U) = f(X ∖U) is
compact (when given the subspace topology). Finally by Theorem 7.2.6(2), this implies that
Y ∖ f(U) is closed in Y , so that f(U) is open in Y , as desired.

Example 8.1.2. Let C ∶= {(x, y) ∈ R2 ∶ x2 + y2 = 1} ⊂ R2. Let I ∶= [0,1], let I/{0,1} denote
the quotient of I by the subpace {0,1} (Example 6.2.9), and let q ∶ I → I/{0,1} denote the
associated quotient map.

We have a continuous function p ∶ I → C given by f(t) ∶= (cos(2πt), sin(2πt)). Since
p(0) = p(1), there is a unique continuous function p ∶ I/{0,1} → C such that p ○ q = p. The
function p is bijective, the quotient space I/{0,1} is compact (Example 7.2.2), and C is
Hausdorff (as it is metrizable), so Theorem 8.1.1 implies that p is a homeomorphism.

It follows that C is compact too. This also gives an alternative proof that p is a quotient
map (which we proved directly in Example 6.2.6).

§8.2. Products of compact spaces

Definition 8.2.1. Let X be a topological space and let U be an open cover of U. A refinement
of U is an open cover V of X such that for every V ∈ V, there exists U ∈ U such that V ⊆ U .

Lemma 8.2.2. Let X be a topological space, let B be a basis generating the topology on X,
and let U be an open cover of X. Then there exists a refinement V of U such that V ⊆ B (i.e.
every element of V is in the basis B).

Proof. Define V to consist of those B ∈ B for which there exists U ∈ U such that B ⊆ U .
That V is an open cover follows from what it means for a topology to be generated by a
basis: for any x ∈ X, since U is an open cover, there must exist U ∈ U containing x; since
the topology is generated by B, there must then exist B ∈ B such that x ∈ B. Hence V is a
refinement of U as desired.

Lemma 8.2.3. Let X be a topological space, let U be an open cover of X, and let V be a
refinement of U. Suppose that V admits a finite subcover. Then so does U.

Proof. By our hypotheses, we may choose V1, . . . , Vn ∈ V that cover X, and for each 1 ≤ i ≤ n
we may choose Ui ∈ U such that Vi ⊆ Ui. Then U1, . . . , Un also cover X.

Proposition 8.2.4. Let X and Y be compact topological spaces. Then the product X × Y
(equipped with the product topology) is compact.

Proof. The product topology on X×Y is generated by the basis B consisting of open subsets
U × V where U is an open subset of X and V is an open subset of Y . By Lemmas 8.2.2
and 8.2.3, it suffices to take any open cover of X consisting of such basis elements, U ⊆ B,
and show that it has a finite subcover.

For any x ∈X, the subspace {x}×Y of X×Y is homeomorphic to Y , hence compact. Thus,
we may choose finitely many elements (Ux,1 ×Vx,1), . . . , (Ux,m ×Vx,m) ∈ U that cover {x}×Y ,
and we may assume x ∈ Ux,i for all 1 ≤ i ≤m (if this didn’t hold for some i, then Ux,i × Vx,i
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doesn’t intersect {x} × Y , and so we can remove it from our list without changing the fact
that it covers {x} × Y ). Note that Vx,1, . . . , Vx,m must then cover Y . Setting Ux ∶= ⋂mi=1Uxi ,
we have that Ux is a neighborhood of x in X and that

Ux × Y = Ux × (
m

⋃
i=1
Vx,i) =

m

⋃
i=1
(Ux × Vx,i) ⊆

m

⋃
i=1
(Ux,i × Vx,i)

i.e. Ux × Y is covered by our finite list (Ux,1 × Vx,1), . . . , (Ux,m × Vx,m) of elements of U.
The collection {Ux}x∈X is an open cover of X, and since X is compact, we may choose

finitely many elements Ux1 , . . . , Uxn that cover X. Then X × Y = ⋃nj=1(Uxj × Y ), and since
each Uxi × Y is covered by finitely many elements of U by the previous paragraph, it follows
that the finite union X × Y is also covered by finitely many elements of U.

Corollary 8.2.5. Let X1, . . . ,Xn be compact topological spaces. Then their product ∏ni=1Xi

(equipped with the product topology) is compact.

Proof. This follows from Proposition 8.2.4 by induction.

Example 8.2.6. Let ai < bi be real numbers for 1 ≤ i ≤ n. By Theorem 7.1.9 and Corol-
lary 8.2.5, the product of closed intervals [a1, b1] ×⋯ × [an, bn] is compact.

Example 8.2.7. Let p ∶ I → C be as in Example 8.1.2, and let p′ ∶ I × I → C × C be the
product function p′(t1, t2) ∶= (p(t1), p(t2). Let ∼ be the equivalence relation on I×I generated
by the relations (0, t) ∼ (1, t) and (t,0) ∼ (t,1) for t ∈ I. Analogously to Example 8.1.2,
but now invoking the fact that I × I is compact (Example 8.2.6), we see that there is a
homeomorphism (I × I)/∼→ C ×C.

Example 8.2.8. The Klein bottle (Example 6.2.13) is also quotient space of I × I, hence
also compact.

Remark 8.2.9. In fact, the product of any collection of compact topological spaces {Xi}i∈I
is compact, that is, even when the set I is not finite. This fact is called Tychonoff’s theorem.
Unfortunately, we will not discuss a proof of this general statement here. There are various
proofs, all of them requiring more sophisticated argument than above; for instance, they
must engage seriously with the axiom of choice. I encourage you to read about it in the
textbook or elsewhere, if you are interested.

§8.3. Compactness and boundedness

We first recall the following from Lecture 1.

Definition 8.3.1. Let X be a metric space and let Y be a subset of X. We say that Y is
bounded if there exists R > 0 such that dX(y, y′) < R for any y, y′ ∈ Y .

Lemma 8.3.2. Let X be a metric space, let x0 ∈X, and let Y be a subset of X. Then Y is
bounded if and only if there exists r > 0 such that Y ⊆ BX(x0, r).

Proof. Suppose that Y is bounded. If Y is empty, then there is nothing to prove. If Y is not
empty, choose y0 ∈ Y , and let a ∶= dX(x0, y0). Since Y is bounded, we may choose R > 0 such
that dX(y0, y) < R for all y, y′ ∈ Y . Then by the triangle inequality we have dX(x0, y) < a+R
for all y ∈ Y , so Y ⊆ BX(x0, a +R).

For the converse, let r > 0 be such that Y ⊆ BX(x0, r). Then the triangle inequality tells
us that, for any y, y′ ∈ Y , we have

dX(y, y′) ≤ dX(y, x0) + dX(x0, y
′) < r + r = 2r,

proving that Y is bounded.

Remark 8.3.3. Let X be a set and let d1 and d2 be two equivalent metrics on X (as defined
in Homework 2). Then a subset Y of X is bounded with respect to the metric d1 if and only
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if it is bounded with respect to the metric d2.

Example 8.3.4. We say that a subset of Rn is bounded if it so with respect to the standard
metric on Rn. By Remark 8.3.3 and a problem from Homework 2, this is equivalent to being
bounded with respect to the ℓ∞ product metric on Rn. In other words, invoking Lemma 8.3.2,
a subset Y of Rn is bounded if and only if the following (equivalent) conditions hold:
(1) there exists r1 > 0 such that Y is contained in a standard ball of radius r1 around the

origin.
(2) there exists r2 > 0 such that Y is contained in the box [−r2, r2] ×⋯ × [−r2, r2].

Proposition 8.3.5. Let X be a metric space and let Y be a compact subspace of X. Then
Y is closed and bounded as a subset of X.

Proof. Recall from Homework 2 that any metric space is Hausdorff. It thus follows from Theo-
rem 7.2.6(2) that Y is closed. It remains to show that Y is bounded. IfX is empty, there is noth-
ing to prove. If it is nonempty, choose any point x0 ∈X. Then U ∶= {BX(x0, r)}r>0 is an open
cover of X—it covers X because any x ∈X has finite distance from x0; in particular, it covers
Y . Since Y is compact, we may choose finitely many elements BX(x0, r1), . . . ,BX(x0, rn) of
U that still cover Y (Lemma 7.2.5). It follows that if we choose r > max(r1, . . . , rn), then
Y ⊆ BX(x0, r), and hence Y is bounded by Lemma 8.3.2.

Corollary 8.3.6. [Generalized extreme value theorem] Let X be a compact topological space,
let Y be a metric space, and let f ∶X → Y be a continuous function. Then:

(1) the function f is bounded: that is, its image f(X) is a bounded subset of Y ;
(2) in the case Y = R, the function f achieves maximum and minimum values: that is,

there exist xmax, xmin ∈X such that, for any x ∈X, we have f(xmin) ≤ f(x) ≤ f(xmax).

Proof. Since X is compact, so is the subspace f(X), by Proposition 7.2.1. Then by Propo-
sition 8.3.5, this implies that f(X) is closed and bounded. So we have proved (1). If Y = R,
then the fact that f(X) is bounded subset of R means that it has a supremem and infimum,
and the fact that it is closed means that these are contained in f(X), which proves (2).

In the context of Euclidean space, the converse to Proposition 8.3.5 holds as well:

Theorem 8.3.7. [Heine–Borel] Let X be a subspace of Rn. Then X is compact as a topolog-
ical space if and only if it is a closed and bounded as a subset of Rn.

Proof. The “only if” direction is a special case of Proposition 8.3.5. For the “if” direction,
suppose that X is closed and bounded. Then there exists R > 0 such that X is a closed subset
of [−R,R] ×⋯ × [−R,R]. This latter space is compact by Example 8.2.6, which implies that
X is compact by Theorem 7.2.6(1).

However, in the setting of metric spaces in general, the converse to Proposition 8.3.5 may
not hold:

Example 8.3.8. Let X be an infinite set equipped with the discrete metric. Then X is
closed and bounded as a subset of itself, but it is not compact (Nonexample 7.1.5).
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LECTURE 9. CONNECTEDNESS (OCT 8)

Last week, we discussed the topologically invariant property of compactness, which distin-
guishes, for example, the topological spaces (0,1) and [0,1]. Today, we will discuss another
topologically invariant property, connectedness. This was advertised in Example 0.3.1, as
an idea that would allow us to distinguish R from R2; we will make that discussion precise
today. We saw that compactness was related to the extreme value theorem, and we will see
now that connectedness is related to the intermediate value theorem.

§9.1. Path connectedness

Definition 9.1.1. Let X be a topological space and let x0, x1 ∈X. A path in X from x0 to
x1 is a continuous function α ∶ [0,1]→X such that α(0) = x0 and α(1) = x1.

Definition 9.1.2. Let X be a topological space. We say that X is path connected if for any
x0, x1, there exists a path in X from x0 to x1.

Example 9.1.3. For any n ∈ N, the Euclidean space Rn is connected. For n ≥ 2, the
complement of any point in Euclidean space, Rn ∖ {x}, is also path connected.

Theorem 9.1.4. For any x ∈ R, the subspace R ∖ {x} of R is not path connected.

Proof. Choose real numbers x0 < x and x1 > x. We claim that there is no path α ∶ [0,1]→
R ∖ {x} from x0 to x1. Indeed, this follows from the intermediate value theorem, which tells
us that any continuous function [0,1]→ R which takes at some points has values x0 and x1
must also at some point have value x.

Proposition 9.1.5. Let f ∶ X → Y be a continuous function between topological spaces.
Suppose that X is path connected. Then the subspace f(X) of Y is also path connected.

Proof. Let y0, y1 ∈ f(X). Choose x0, x1 ∈X such that f(x0) = y0 and f(x1) = y1. Since X
is path connected, we may find a path α ∶ [0,1]→X from x0 to x1. Then the composition
f ○ α ∶ [0,1]→ f(X) is a path from y0 to y1.

Corollary 9.1.6. Let X and Y be homeomorphic topological spaces. Then X is path connected
if and only if Y is path connected.

Proof. This follows from Proposition 9.1.5 (similar to Corollary 7.2.3).

Example 9.1.7. Let n ≥ 2. For any points x ∈ R and x′ ∈ Rn, the topological spaces R ∖ {x}
and Rn ∖ {x′} are not homeomorphic: in fact, what we see is that there exists no continuous
surjection Rn ∖ {x′}→ R ∖ {x}. It follows that there exists no continuous bijection Rn → R,
in particular Rn and R are not homeomorphic.

§9.2. Connectedness

We will now discuss a variant of the notion of path connectedness that is phrased purely in
terms of open sets, rather than paths. Why do this? Here are two justifications:
(1) As mentioned about the notion of compactness introduced last week, this next notion

has the advantage of being useful in broader generality. Namely, there are contexts where
one is interested in topological spaces that are of such different nature to Euclidean
space that it is not natural to contemplate paths in them, i.e. continuous functions
from [0,1] into them. (Algebraic geometry is one such context.)

(2) It helps us understand the notions we have already discussed. For example, below we
will learn alternative proofs of Theorem 9.1.4 and the intermediate value theorem.
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Our discussion today will be focused on the second point; perhaps you will learn more about
the first point in the future.

Definition 9.2.1. Let X be a topological space. We say that X is connected if there does
not exist nonempty, open subsets U and V of X such that U ∩ V = ∅ (i.e. U and V are
disjoint) and U ∪ V =X (i.e. U and V cover X).

This definition can be rephrased in the following way.

Definition 9.2.2. Let X be a topological space. We say that a subset U of X is clopen if it
is both closed and open in X.

Proposition 9.2.3. Let X be a topological space. Then X is connected if and only if the
only clopen subsets of X are the empty subset and the entirety of X.

Proof. Exercise.

Note that the definition of connectedness involves something not happening/existing. For
this reason, it can be simpler to explicitly prove that a topological space is not connected
than proving that it is, in contrast to the discussion of path connectedness in §9.1,

Example 9.2.4. Let x ∈ R. Let U ∶= {y ∈ R ∶ y < x} ⊂ R and let V ∶= {y ∈ R ∶ y > x} ⊂ R.
Then U and V are nonempty, open subsets of R ∖ {x} that are disjoint and cover R ∖ {x}.
Thus, R ∖ {x} is not connected.

Theorem 9.2.5. For any real numbers a < b, the closed interval [a, b] is connected.

Proof. Suppose given two disjoint open subsets U,V ⊆ [a, b] that cover [a, b], with a ∈ U .
Let C ⊆ [a, b] consist of those points c ∈ [a, b] such that [a, c] ⊆ U . We have a ∈ C, so C is a
nonempty subset of [a, b], hence admits a supremem d ∶= sup(C) ∈ [a, b]. What we want to
show is that d ∈ C and d = b (then U = [a, b] and V is empty).

We first claim that d > a. This follows from the fact that U is open, and hence contains
the interval [a, a + δ) for some δ > 0.

We next claim that d ∈ C, i.e. [a, d] ⊆ U . To see this, note that, for every c ∈ [a, d), we
must have c ∈ C, i.e. [a, c] ⊆ U (this is immediate from d being the supremem of C). It
follows from this that [a, d) ⊆ U . So if d ∉ C, then we must have d ∉ U , and hence d ∈ V .
Then, since V is open and d > a by the previous paragraph, there must exist some c < d with
c ∈ V , contradicting that [a, d] ⊆ U .

Finally, we claim that d = b. We know now that [a, d] ⊆ U , and since U is open, if d < b
then we must have [d, d+ ϵ) ⊆ U for some ϵ > 0. This would contradict d being the supremem
of C.

Corollary 9.2.6. Let X be a topological space. Suppose that X is path connected. Then X
is connected.

Proof. Suppose given two nonempty, open subsets U,V ⊆X that are disjoint and cover X.
Since they are nonempty, we may choose x0 ∈ U and x1 ∈ V . Since X is path connected, we
may find a path α ∶ [0, 1]→X from x0 to x1. Then α−1(U) and α−1(V ) are nonempty open
subsets of [0,1] that are disjoint and cover [0,1]. This contradicts that [0,1] is connected
(Theorem 9.2.5).

Example 9.2.7. By Corollary 9.2.6 and Example 9.1.3, Rn is connected for any n ∈ N and,
for Rn ∖ {x} is connected for n ≥ 2 and any x ∈ Rn.

Also, combining Corollary 9.2.6 and Example 9.2.4, we get an alternative proof of
Theorem 9.1.4 that does not invoke the intermediate value theorem: namely, since R ∖ {x} is
not connected, it is not path connected. Relatedly, we can use the notion of connectedness
to give a proof of (a generalized form of) the intermediate value theorem; see below.

Proposition 9.2.8. Let X be a subspace of R. Then the following are equivalent:

35



(1) X is connected;
(2) X is path connected;
(3) X is convex: that is, for any x1, x2 ∈X with x1 < x2, we have [x1, x2] ⊆X.

Proof. It is clear that convexity implies path connectedness, and that path connectedness
implies connectedness follows from Corollary 9.2.6. It remains to show that connectedness
implies convexity. We will prove the contrapositive.

Suppose that X is not convex: this means that we may find real numbers x1 < x < x2
where x1, x2 ∈ X and x ∉ X. Let U ∶= {y ∈ X ∶ y < x} and let V ∶= {y ∈ X ∶ y > x}. Then U
and V are disjoint open subsets covering X, and they are nonempty since x1 ∈ U and x2 ∈ V .
Thus X is not connected.

Remark 9.2.9. Proposition 9.2.8 does not remain true when we replace R by Rn for n ≥ 2.
For example, let X be the closure in R2 of the subset {(x, sin(1/x)) ∶ 0 < x ≤ 1} ⊂ R2. Then
the topological space X (sometimes called the topologist’s sin curve) is connected but not
path connected (see §24, Example 7 in the textbook).

Proposition 9.2.10. Let f ∶X → Y be a continuous function between topological spaces. If
X is connected, then the subspace f(X) of Y is connected.

Proof. We prove the contrapositive. Suppose that f(X) is not connected, so we may
find nonempty open subsets U,V ⊆ f(X) that are disjoint and cover f(X). Then f−1(U)
and f−1(V ) are nonempty open subsets of X that are disjoint and cover X, so X is not
connected.

Corollary 9.2.11. [Generalized intermediate value theorem] Let X be a connected topological
space and let x1, x2 ∈X such that f(x1) < f(x2). Then for every y ∈ R such that f(x1) < y <
f(x2), there exists x ∈X such that f(x) = y.

Proof. Combine Propositions 9.2.10 and 9.2.8.

§9.3. Connected components

Consider the subspaces [0,1], [0,1] ∪ [2,3], and [0,1] ∪ [2,3] ∪ [4,5] of R. The first one is
connected, while the second and third are not. In particular, the first one is not homeomorphic
to either of the other two. Are the second and third homeomorphic? We can distinguish
them by being a little bit more “quantiative” with the notion of connectedness, as follows.

Lemma 9.3.1. Let X be a topological space and let {Yα}α∈A be a collection of connected
subspaces of X such that the intersection ⋂α∈A Yα is nonempty. Then the union ⋃α∈A Yα is
also connected.

Proof. Let U,V be open subsets of the union ⋃α∈A Yα (with respect to the subspace topology)
that are disjoint and cover the entire union. Choose a point in the intersection y ∈ ⋂α∈A Yα
and assume without loss of generality that y ∈ U . For each α ∈ A, we have that U ∩ Yα and
V ∩ Yα are two open subsets of Yα that are disjoint and cover Yα. Moreover, since y ∈ U , we
know that U ∩ Yα is nonempty. Since Yα is connected, V ∩ Yα must then be empty. This
holds for all α ∈ A, so we conclude that ⋃α∈A(V ∩ Yα) = V is empty.

Definition 9.3.2. Let X be a topological space. Given x,x′ ∈X, let us write x ∼ x′ if there
exists a connected subspace Y of X that contains both x and x′. This defines an equivalence
relation on X:
(1) For any x ∈X, the one point subset {x} is connected, so x ∼ x.
(2) Symmetry is clear from the definition.
(3) For any x,x′, x′′ ∈X, if Y is a connect subspace containing x,x′ and Y ′ is a connected

subspace containing x′, x′′, then Y ∪ Y ′ is a connected subspace containing x,x′′: the
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union is connected by Lemma 9.3.1, since Y ∩ Y ′ contains x′ and hence is nonempty.
A connected component of X is an equivalence class for this equivalence relation (note that

these are certain subsets of X). The set of connected components, i.e. the set of equivalence
classes for this equivalence relation, is denoted by π0(X).

Example 9.3.3. The topological spaces [0,1], [0,1] ∪ [2,3], and [0,1] ∪ [2,3] ∪ [4,5] have
one, two, and three connected components, respectively.

Lemma 9.3.4. Let X be a topological space and let Y be a nonempty connected subspace of
X. Then there exists a unique connected component X0 of X such that Y ⊆X.

Proof. By definition of the equivalence relation in Definition 9.3.2, all points of Y lie in the
same connected component. So the unique connected component X0 is the one containing
any fixed point y ∈ Y .

Construction 9.3.5. Let f ∶X → Y be a continuous function between topological spaces.
We define a function of sets π0(f) ∶ π0(X) → π0(X), the induced function on sets of
connected components, as follows. Let X0 ∈ π0(X) be a connected component of X. By
Proposition 9.2.10, its image f(X0) is connected subspace of Y , and so by Lemma 9.3.4, it
is contained in a unique connected component of Y ; we define π0(f)(X0) ∈ π0(Y ) to be this
connected component of Y .

Proposition 9.3.6. (1) Let X be a topological space and let f ∶ X → X be the identity
function of X. Then the induced function π0(f) ∶ π0(X)→ π0(X) is the identity function
of π0(X).

(2) Let f ∶X → Y and g ∶ Y → Z be continuous functions between topological spaces. Then
π0(g ○ f) = π0(g) ○ π0(f) (this is an equality of two functions π0(X)→ π0(Z)).

Proof. Exercise.

Corollary 9.3.7. Let f ∶X → Y be a homeomorphism between topological spaces. Then the
induced function π0(f) ∶ π0(X)→ π0(Y ) is a bijection.

Proof. It follows from Proposition 9.3.6 that π0(f−1) is an inverse function to π0(f).

We can think of Corollary 9.3.7 as saying that the set π0(X) is a “topological invariant”
of the topological space X, of a similar nature to topologically invariant properties like
compactness and connectedness. The difference is that the invariant π0(X) is not a property
but a set, and it is invariant in the sense that homeomorphic topological spaces have bijective
sets of connected components.

Example 9.3.8. The topological spaces [0,1] ∪ [2,3] and [0,1] ∪ [2,3] ∪ [4,5] are not
homeomorphic, because there is no bijection between a set with two elements and one with
three elements.
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LECTURE 10. MANIFOLDS (OCT 10)

§10.1. Definition and examples

Definition 10.1.1. Let n ∈ N and let X be a topological space. We say that X is locally
Euclidean of dimension n if every point of X has a neighborhood U that is homeomorphic to
an open subspace of Rn, or equivalently, if X has an open cover {Uα}α∈A where each open
subspace Uα is homeomorphic to an open subspace of Rn. Such an open cover is called an
atlas of X.

Definition 10.1.2. Let n ∈ N and let X be a topological space. We say that X is a topological
manifold of dimension n if X is locally Euclidean of dimension n, Hausdorff, and admits a
countable basis.

A topological curve is a topological manifold of dimension 1 and a topological surface is
a topological manifold of dimension 2.

Remark 10.1.3. The condition in Definition 10.1.2 that X admit a countable basis is
referred to as second countability. For a locally Euclidean topological space X, this condition
is equivalent to X admitting a countable atlas; in particular, if X is also compact, then this
automatically holds (as then X admits a finite atlas).

Example 10.1.4. Any open subspace of Rn is a topological manifold of dimension n.

Example 10.1.5. Let S1 ∶= {(x0, x1) ∈ R2 ∶ x2
0 + x2

1 = 1}. Then S1 is a compact topological
curve. We know that it is compact Hausdorff. One atlas consists of the open sets

Ui ∶= {(x0, x1) ∈ S1 ∶ xi > 0}, Vi ∶= {(x0, x1) ∈ S1 ∶ xi < 0} (i ∈ {0,1}),

noting that the function fi ∶ S1 → (−1,1) given by fi(x0, x1) = x1−i restricts to homeomor-
phisms Ui → (−1,1) and Vi → (−1,1).

Example 10.1.6. Let Sn ∶= {(x0, x1, . . . , xn) ∈ Rn+1 ∶ x2
0 + x2

1 +⋯ + x2
n = 1}. One can check

in a similar fashion as in Example 10.1.5 that Sn is a topological manifold of dimension n.

Example 10.1.7. Let I ∶= [0, 1]. The following quotients of the square I × I (which we have
discussed in previous lectures) are all compact topological surfaces:
(1) the quotient T ∶= (I × I)/∼T , where ∼T is the equivalence relation generated by the

relations (0, t) ∼T (1, t) and (t,0) ∼T (t,1) for t ∈ I;
(2) the quotient K ∶= (I × I)/∼K , where ∼K is the equivalence relation generated by the

relations (0, t) ∼K (1, t) and (t,0) ∼K (1 − t,1) for t ∈ I;
(3) the quotient P ∶= (I × I)/∼P , where ∼P is the equivalence relation generated by the

relations (0, t) ∼P (1,1 − t) and (t,0) ∼P (1 − t,1) for t ∈ I.

Example 10.1.8. The gluing R ∐R∖{0} R (Example 6.3.4) is locally Euclidean of dimension
1, but it is not Hausdorff, so it is not a topological curve.

What other kinds of topological manifolds exist in the world? This is one of the central
questions in the field of topology. Compact topological curves and surfaces can be classified
completely:
(1) Every connected, compact topological curve is homeomorphic to S1. You can try to

prove this for yourself, just from the definitions (it doesn’t require any brand new
ideas).

(2) Every connected, compact topological surface is homeomorphic to either the sphere S2,
some number of copies of the torus T connected together, or some number of copies
of P connected together. (The precise term in the latter two cases is connected sum. I
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drew a rough sketch of the idea in lecture, and you can look it up if you are interested.)
Proving this is considerably more complicated than the statement about curves above.
Some of the relevant ideas will be discussed later in the course.

This classification question becomes yet far more complicated in dimensions ≥ 3. There are
not complete answers like the those above for dimensions 1 and 2. Research in this area has
a rich history and is ongoing.

§10.2. Embedding manifolds in Euclidean space

In addition to classifying manifolds, one can study the ways in which one manifold may be
embedded into another. In particular, one might study the ways in which a given manifold
embeds into Euclidean spaces RN . Recall the lesson from earlier in the course that there
may be different ways to do this (we saw this in the case of the torus T , in §5.4). As another
example, the field of knot theory is precisely the study of embeddings f ∶ S1 → R3 (or more
generally f ∶ S1 ∐⋯ ∐ S1 → R3).

For now, let’s prove a basic, general result related to this line of thought: namely, the
fact that any compact topological manifold admits at least one embedding into Euclidean
space of some dimension. (In fact, this remains true without the compactness hypothesis,
but we will not prove that here.) The proof will require some preliminary setup.

Definition 10.2.1. Let X be a topological space and let ϕ ∶X → R be a continuous function.
The support of ϕ is defined to be the following closed subset of X:

supp(ϕ) ∶= ϕ−1(R ∖ {0}).

Definition 10.2.2. Let X be a topological space and let U = {U1, . . . , Um} be a finite open
cover of X. A partition of unity subordinate to U is a collection of continuous functions
ϕ1, . . . , ϕm ∶X → [0,1] satisfying the following properties:
(1) for each 1 ≤ i ≤m, we have supp(ϕi) ⊆ Ui;
(2) for all x ∈X, we have ∑mi=1 ϕi(x) = 1.

Lemma 10.2.3. Let X be a compact Hausdorff topological space and let U = {U1, . . . , Um}
be a finite open cover of X. Then there exists a partition of unity subordinate to U.

Let’s postpone the proof of Lemma 10.2.3 for the moment and first see how it allows us
to prove the desired embedding result.

Theorem 10.2.4. Let X be a compact topological manifold of dimension n. Then, for some
N ∈ N, there exists an embedding f ∶X → RN .

Proof. By compactness, we may choose a finite atlas U = {U1, . . . , Um}; let us also fix for
each 1 ≤ i ≤ m an embedding gi ∶ Ui → Rn exhibiting Ui as homeomorphic to an open
subspace of Rn. By Lemma 10.2.3, we may choose a partition of unity ϕ1, . . . , ϕm ∶X → [0, 1]
subordinate to U.

Now, for each 1 ≤ i ≤m, define a function hi ∶X → Rn as follows:

hi(x) ∶=
⎧⎪⎪⎨⎪⎪⎩

ϕi(x) ⋅ gi(x) if x ∈ Ui
0 otherwise

(in the first case, we are multiplying the vector gi(x) ∈ Rn by the scalar ϕi(x) ∈ R). The
restriction of hi to Ui is continuous because ϕi, gi, and multiplication are continuous. The
restriction of hi to X ∖ supp(ϕi) is also continuous, because it is the constant function with
value 0. Since supp(ϕi) ⊆ Ui, the open subsets Ui and X ∖ supp(ϕi) cover X, and hence it
follows that hi is continuous on all of X (for instance by Homework 3, Problem 1).
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We then define the function f ∶X → Rm × (Rn)m by

f(x) ∶= ((ϕ1(x), . . . , ϕm(x)), (h1(x), . . . , hm(x))).

We will show that f is an embedding, which will finish the proof, since Rm × (Rn)m is
homeomorphic to RN for N ∶= m + nm. To show that f is an embedding, it suffices by
Theorem 8.1.1 to show that it is injective, because X is compact and Rm × (Rn)m is
Hausdorff.

Suppose given x, y ∈X such that f(x) = f(y). Choose 1 ≤ i ≤m such that ϕi(x) > 0; there
must exist such an i because ∑mj=1 ϕj(x) = 1. By definition of f , since f(x) = f(y), we have
ϕi(x) = ϕi(y); in particular, ϕi(y) > 0. Since supp(ϕi) ⊆ Ui, it follows that x, y ∈ Ui. Now,
the fact that f(x) = f(y) also implies that hi(x) = hi(y). By definition of hi, this means that
ϕi(x)gi(x) = ϕi(y)gi(y). Since ϕi(x) = ϕi(y) is nonzero, we may divide out this scalar from
both sides and deduce that gi(x) = gi(y). This implies that x = y, since gi is an embedding.
Thus, we have shown that f is injective.

§10.3. Normality

Let’s now return to the matter of proving Lemma 10.2.3. It turns out that a weaker property
than being compact Hausdorff is what is relevant to the proof.

Definition 10.3.1. Let X be a topological space. We say that X is normal if for any two
disjoint closed subsets A,B ⊆ X, there exist two disjoint open subsets U,V ⊆ X such that
A ⊆ U and B ⊆ V .

Example 10.3.2. It follows from Homework 4, Problem 4 and Theorem 7.2.6 that any
compact Hausdorff topological space is normal.

Example 10.3.3. Any metrizable topological space is normal. We leave this as an exercise.

By Example 10.3.2, Lemma 10.2.3 is a special case of the following more general result.

Proposition 10.3.4. Let X be a normal topological space and let U = {U1, . . . , Um} be a
finite open cover of X. Then there exists a partition of unity subordinate to U.

We will prove this using the following result.

Theorem 10.3.5. [Urysohn’s lemma] Let X be a normal topological space and let A,B ⊆X
be two disjoint closed subsets of X. Then there exists a continuous function ϕ ∶ X → [0,1]
such that ϕ(x) = 0 for all x ∈ A and ϕ(x) = 1 for all x ∈ B.

Remark 10.3.6. In the situation of Theorem 10.3.5, if we knew that X were metrizable,
the result would be simple to prove. Namely, if d is a metric inducing the topology of X,
then we can take f to be the function given by

f(x) ∶= d(x,A)
d(x,A) + d(x,B) .

The point/difficulty of Theorem 10.3.5 is to find the function f even when we do not know
whether X is metrizable or not.

In the next lecture, we will discuss the proof of Theorem 10.3.5 and then deduce
Proposition 10.3.4 (and hence Lemma 10.2.3).
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LECTURE 11. URYSOHN’S LEMMA (OCT 17)

§11.1. Normality lemmas

For this section, let X be a normal topological space.

Lemma 11.1.1. Let A be a closed subset of X and let U be an open subset of X, and suppose
that A ⊆ U . Then there exists an open subset V of X such that A ⊆ V and V ⊆ U .

Proof. Set B ∶= X ∖ U ; this is a closed subset of X disjoint from A. Since X is normal,
we may find disjoint open subsets V and W of X such that A ⊆ V and B ⊆W . The latter
condition implies that V ⊆ U , since each point in B =X ∖U has the neighborhood W that is
disjoint from V , implying that B is disjoint from V .

Lemma 11.1.2. Let U = {U1, . . . , Um} be a finite open cover of X. Then there exists an
open cover V = {V1, . . . , Vm} of X such that Vi ⊆ Ui for each 1 ≤ i ≤m.

Proof. We will inductively choose open subsets Vi for 1 ≤ i ≤m such that Vi ⊆ Ui and such
that the collection {V1, . . . , Vi, Ui+1, . . . , Um} covers X.

So fix 1 ≤ i ≤m and suppose that we have such open subsets Vj for 1 ≤ j < i. Then set

Ai ∶=X ∖ (V1 ∪⋯Vi−1 ∪Ui+1 ∪⋯ ∪Um).

This is a closed subset of X, and since {V1, . . . , Vi−1, Ui, . . . , Um} covers X, we must have
Ai ⊆ Ui. By Lemma 11.1.1, we may choose an open subset Vi of X such that Ai ⊆ Vi and
Vi ⊆ Ui. This does the required job: by definition of Ai, the fact that Vi contains Ai implies
that {V1, . . . , Vi, Ui+1, . . . , Um} covers X.

§11.2. Proof of Urysohn’s lemma

In this section, we will prove Theorem 10.3.5. There will be three steps.
Step 1. Let P ∶= Q ∩ [0,1] ⊂X. We will define open subsets Up of X for each p ∈ P such

that the following condition holds for all p, q ∈ P :
(∗) if p < q, then Up ⊆ Uq.

Recall that P is countably infinite, so we may write P = {p0, p1, p2, . . .}. And let us choose
this ordering so that p0 = 1 and p1 = 0. (To given an explicit example of such an ordering,
we may write P = {1,0, 1

2 ,
1
3 ,

2
3 ,

1
4 ,

3
4 ,

1
5 ,

2
5 ,

3
5 ,

4
5 ,

1
6 , . . .}.) We will define the open subsets Up

inductively with respect to this ordering.
To begin, we define Up0 = U1 to be X ∖B. Since A is disjoint from B, we have A ⊆ U1,

and hence, by Lemma 11.1.1, we may choose Up1 = U0 to be an open subset of X such that
A ⊆ U0 and U0 ⊆ U1.

With these in hand, we proceed to the inductive step: let n ≥ 2 and suppose that
we have constructed open subsets Up0 , . . . , Upn−1 such that condition (∗) holds for p, q ∈
{p0, . . . , pn−1}. We would like to construct an open subset Upn such that the condition
holds for p, q ∈ {p0, . . . , pn−1, pn}. Choose 0 ≤ k, l < n so that pk is the minimum of the
elements in {p0, . . . , pn−1} that are greater than pn and pl is the maximum of the elements
in {p0, . . . , pn−1} that are less than pn (i.e. the points in this finite list of elements of [0,1]
that are immediately to the right and to the left of pn). Then, knowing that condition (∗)
already holds for p, q ∈ {p0, . . . , pn−1}, it suffices to choose Upn to be an open subset such
that Upk

⊆ Upn and Upn ⊆ Upl
. This we may do by Lemma 11.1.1, as we know Upk

⊆ Upl
.

Step 2. We extend the definition of the open subsets Up to all rational numbers p as
follows: for p ∈ Q ∩ (−∞,0), define Up ∶= ∅, and for p ∈ Q ∩ (1,∞), define Up ∶=X.

Now, for each x ∈ X, let Qx ∶= {p ∈ Q ∶ x ∈ Up}, and let ϕ(x) ∶= inf(Qx); it’s immedaite
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from the definition made in the previous paragraph that ϕ(x) ∈ [0, 1]. Thus, we have defined
a function ϕ ∶X → [0,1].

Step 3. We claim that the function ϕ satisfies the conclusion of the theorem. To see this,
we first make the following observations, for any x ∈X and p ∈ P = Q ∩ [0,1]:
(1) if x ∈ Up, then we have x ∈ Uq for all q > p, and hence ϕ(x) ≤ p;
(2) if x ∉ Up, then we have x ∉ Uq for all q < p, and hence ϕ(x) ≥ p.

Now, since A ⊆ U0, observation (1) implies that ϕ∣A = 0, and since U1 =X ∖B, observation
(2) implies that ϕ∣B = 1. To finish the proof, we must show that ϕ is continuous. It suffices
to show, for any x ∈ X and any open interval (c, d) ⊂ R containing ϕ(x), that there is
a neighborhood U of x in X such that f(U) ⊆ (c, d). For this, we may choose rational
numbers p, q ∈ Q such that c < p < f(x) < q < d and then take U ∶= Uq ∖Up = Uq ∩ (X −Up);
this is an open subset of X, and observations (1) and (2) imply both that x ∈ U and that
f(U) ⊆ [p, q] ⊂ (c, d).

§11.3. Proof of Proposition 10.3.4

In this section, we will prove Proposition 10.3.4, tying up the last loose end from the last
lecture.

We are given our open cover U = {U1, . . . , Um}. Applying Lemma 11.1.2 twice, we may
choose open covers V = {V1, . . . , Vm} and W = {W1, . . . ,Wm} such that Vi ⊆ Ui and Wi ⊆ Vi
for each 1 ≤ i ≤m. By Urysohn’s lemma (Theorem 10.3.5), we may choose for each 1 ≤ i ≤m
a continuous function ψi ∶ X → [0,1] such that ψi(x) = 0 for x ∈ X ∖ Vi and ψi(x) = 1 for
x ∈Wi; note then that

supp(ψi) ⊆ Vi ⊆ Ui.
We then define ϕi ∶X → [0,1] by

ϕi(x) ∶=
ψi(x)

∑mj=1 ψj(x)
,

noting that the denominator is always positive since {W1, . . . ,Wm} cover X and ψj(x) = 1
for x ∈Wj . The functions ϕ1, . . . , ϕm are a partition of unity subordinate to U, as desired.

§11.4. Another embedding theorem

Theorem 11.4.1. Let X be a topological space that is T1 and normal, and let {Bα}α∈A be a
basis for the topology on X. Then there exists an embedding f ∶X → [0, 1]A×A =∏α,β∈A[0, 1]
(where the target is equipped with the product topology).

Remark 11.4.2. If A is a countable set, so is A ×A.

We isolate the first step in the proof of Theorem 11.4.1 in the following result.

Lemma 11.4.3. In the situation of Theorem 11.4.1, there exists a collection of continuous
functions fα,β ∶X → [0,1] for α,β ∈ A such that for any point x ∈X and neighborhood U of
x in X, there exist α,β ∈ A such that fα,β(x) = 1 and fα,β ∣X∖U = 0.

Proof. Let α,β ∈ A. If Bβ ⊆ Bα, let’s choose, using Urysohn’s lemma (Theorem 10.3.5),
fα,β to be a continuous function X → [0,1] such that fα,β ∣X∖Bα = 0 and fα,β ∣Bβ

= 1. If this
containment doesn’t hold, then let’s define fα,β to be the constant function with value 0.

We claim that this collection of functions {fα,β}α,β∈A does the job. Let x ∈X and let U
be a neighborhood of x in X. The topology of X being generated by the given basis, we may
choose α ∈ A such that x ∈ Bα and Bα ⊆ U . Since X is T1, the subset {x} of X is closed,
and hence, by Lemma 11.1.1, we may choose an open neighborhood V of x with V ⊆ Bα. We
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may then choose β ∈ A such that x ∈ Bβ and Bβ ⊆ V . Then we have Bβ ⊆ Bα, and so

fα,β ∣Bβ
= 1 Ô⇒ fα,β(x) = 1, fα,β ∣X∖Bα = 0 Ô⇒ fα,β ∣X∖U = 0.

Proof of Theorem 11.4.1. Choose a collection of continuous functions fα,β ∶X → [0,1]
for α,β ∈ A as in Lemma 11.4.3, and let f ∶ X → [0,1]A×A be the funtion with these as
component functions, i.e. defined by f(x) ∶= (fα,β(x))α,β∈A.

We first prove that f is injective. Let x, y ∈X with x ≠ y. Using that X is T1, we have
that U ∶=X ∖ {y} is a neighborhood of x in X. By the property of the collection of functions
{fα,β}α,β∈A guaranteed by Lemma 11.4.3, there must exist α,β ∈ A such that fα,β(x) = 1
and fα,β(y) = 0. This implies that f(x) ≠ f(y), showing that f is injective.

We now prove that f is in fact an embedding. Let Y ∶= f(X), regarded as a subspace
of [0,1]A×A. Let U be an open subset of X, let x0 ∈ U , and let y0 ∶= f(x0) ∈ f(U). We will
find a neighborhood W of y0 in Y such that W ⊆ f(U). This will show that f(U) is an open
subset of f(Y ), which proves that f is an embedding.

We may choose α,β ∈ A such that fα,β(x0) = 1 and fα,β ∣X∖U = 0. Let pα,β ∶ [0,1]A×A →
[0,1] be the projection function onto the (α,β) component, and let V ∶= p−1

α,β((0,1]). Let
W ∶= V ∩ f(Y ). By definition of the subspace and product topologies, this is an open subset
of f(Y ), as (0,1] is an open subset of [0,1], and it contains y0 because

pα,β(y0) = pα,β(f(x0)) = fα,β(x0) = 1.

To finish the proof, we verify that W ⊆ f(U): if y ∈W , then we have y = f(x) for some x ∈X
(in fact, this x is unique, since f is injective) and moreover

fα,β(x) = pα,β(f(x)) = pα,β(y) ≠ 0,

implying that x ∈ U , and hence y ∈ f(U).

§11.5. Remarks on metrizability

Recall that any subspace of a metrizable topological space is also metrizable. Thus, since the
Euclidean spaces RN are metrizable, Theorem 10.2.4 implies that any compact topological
manifold is metrizable.

It is possible to also show that the countably infinite product RN =∏n∈NR is metrizable.
Using this fact, Theorem 11.4.1 and Remark 11.4.2 imply that any topological space that is
T1, normal, and admits a countable basis is in fact metrizable.

43



LECTURE 12. REVIEW (OCT 22)

§12.1. Exercises

Exercise 12.1.1. Let X be a topological space, let B be a basis generating the topology of
X, let Y be a subset of X, and let x ∈X.
(1) Show that x ∈ Y if and only if B ∩ Y ≠ ∅ for every B ∈ B that contains x.
(2) Does the assertion in (1) remain true if B is assumed only to be a subbasis, rather than

a basis?

Exercise 12.1.2. Let {Xα}α∈A be a collection of topological spaces and let X be the product
set ∏α∈AXα.
(1) Let B ⊂ N(X) consist of the subsets ∏α∈AUα ⊆X where Uα is an open subset of Xα

for each α ∈ A. Show that B is a basis for a topology on X.
The topology generated by the basis B is called the box topology on the product set X.
(2) Show that the box topology on X is finer than the product topology on X, and is equal

to the product topology if the set A is finite.
For the last two parts of the exercise, we consider the case where A = N and Xα = R (equipped
with the standard topology) for each α ∈ N, so that X =∏α∈NR = RN is the set of sequences
in R.
(3) Let δ ∶ R → RN be the function sending x to the constant sequence (x,x, x, . . .). Show

that f is not continuous with respect to the box topology on RN and that it is continuous
with respect to the product topology on RN.

(4) Let P ⊂ RN be the subset consisting of those sequences (xn)n∈N such that xn > 0 for all
n ∈ N. Show the following:
(i) With respect to either the product topology or the box topology on RN, the point
(0,0,0, . . .) ∈ RN lies in the closure P .

(ii) There exists no sequence of points in P (meaning a sequence of sequences of positive
real numbers) that converges to (0, 0, 0, . . .) with respect to the box topology, but
there does exist a sequence of points in P that converges to (0,0,0, . . .) with
respect to the product topology.

Exercise 12.1.3. Let X be a topological space, let Y be a subspace of X, and let Z be a
subset of Y .
(1) Suppose that Z is open in Y . Show that if Y is open in X, then Z is also open in X,

and show that this is not necessarily true if Y is not open in X.
(2) Suppose that Z is closed in Y . Show that if Y is closed in X, then Z is also closed in

X, and show that this is not necessarily true if Y is not closed in X.

Exercise 12.1.4. Let f ∶ X → Y be a function between topological spaces, and let A and
B be two subspaces of X that cover X. Suppose either that A and B are both open in
X or that they are both closed in X, and suppose that the restrictions f ∣A ∶ A → Y and
f ∣B ∶ B → Y are continuous. Show that f is continuous.

Exercise 12.1.5. Let X be an infinite set equipped with the cofinite topology. Show that
every continuous function f ∶X → R is a constant function.

Exercise 12.1.6. It follows from Exercise 12.1.2(4) that the box topology on RN is not
metrizable. Use a similar argument to show that, for A an uncountable set, the product
topology on ∏α∈AR is not metrizable.
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LECTURE 13. REVIEW (OCT 24)

§13.1. Exercises

Exercise 13.1.1. Let ∼ be the equivalence relation on R defined as follows: s ∼ t when
s − t ∈ Z. Show that the quotient space R/∼ is compact.

Exercise 13.1.2. Let f ∶X → Y be a continuous function between topological spaces. We
say that f is locally constant if, for each x ∈ X, there exists a neighborhood U of x in X
such that the restriction f ∣U ∶ U → Y is constant. Show that, if f is locally constant and X
is connected, then f is constant.

Exercise 13.1.3. Show that there exists no continuous bijection [0,1]→ [0,1]2.

Exercise 13.1.4. Let X be a topological space and let f ∶X →X be a continuous function.
A fixed point of f is a point x ∈X such that f(x) = x.

(1) Suppose that X = [0,1]. Show that then f necessarily has a fixed point.
(2) Does the assertion in the previous part remain true if X = [0,1)?

Exercise 13.1.5. Let X be a nonempty, compact metric space. Let f ∶X →X be a function
such that d(f(x), f(y)) < d(x, y) for any two distinct points x, y ∈ X. Show that f has a
unique fixed point.

Hint: Consider the function ϕ ∶ X → R given by ϕ(x) ∶= d(x, f(x)).

Exercise 13.1.6. Let X be a compact Hausdorff topological space. Let C(X) denote the
set of continuous functions f ∶X → R. For a ∈ R, let a ∈ C(X) be the constant function with
value a; and note that, for f, g ∈ C(X), the sum and product functions f + g and fg are also
elements of C(X).

Let ϕ ∶ C(X)→ R be a function such that

ϕ(a) = a, ϕ(f + g) = ϕ(f) + ϕ(g), ϕ(fg) = ϕ(f)ϕ(g) for all a ∈ R and f, g ∈ C(X).

Let I ∶= {f ∈ C(X) ∶ ϕ(f) = 0}.
(1) Show that there exists a point x ∈X such that f(x) = 0 for all f ∈ I.
(2) Let x ∈X be as in the previous part. Show that that ϕ(f) = f(x) for all f ∈ C(X).
(3) Show that the point x ∈X of the previous two parts is unique.

Hint for (1): Suppose not. Show that you could then find f1, . . . , fn ∈ I such that
f−1

1 (R ∖ {0}), . . . , f−1
n (R ∖ {0}) cover X. Then consider g ∶= ∑n

i=1 f2
i .

Exercise 13.1.7. Let A ∶= [0,1]N = ∏n∈N[0,1] and let X ∶= [0,1]A = ∏α∈A[0,1]. Equip X
with the product topology. For each n ∈ N, let xn ∈X be the tuple (αn)α∈A. Show that the
sequence {xn}n∈N in X has no convergent subsequence.
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LECTURE 14. HOMOTOPY (OCT 29)

We are now entering the second part of the course. To begin, let’s review some motivating
discussion from Lecture 0.

In Lecture 9, we proved that R is not homeomorphic to Rn for any n ≥ 2, the key point
being that the complement of a point in the former is not connected while the complement
of a point in the latter is connected. This observation does not, however, allow us to prove
that R2 is not homeomorphic to Rn for any n ≥ 3. In Example 0.3.2, we discussed a strategy
for how we could possibly do so. The strategy involved contemplating not just paths between
points, which we may think of as continuous deformations between points, but also continuous
deformations between paths, i.e. “paths between paths”. Today we will introduce the concept
that makes this idea precise.

§14.1. Definition and basic properties

Notation 14.1.1. We will be dealing with the interval [0,1] very often from here on out.
For convenience, we will use the abbreviation I ∶= [0,1].

Definition 14.1.2. Let X and Y be topological spaces, and let f, g ∶ X → Y be two
continuous maps. A homotopy from f to g is a continuous map h ∶ X × I → Y such that
h(x,0) = f(x) and h(x,1) = g(x) for all x ∈X. We say that f is homotopic to g, and write
f ≃ g, if there exists a homotopy from f to g.

Example 14.1.3. Suppose that X has exactly one point. Then specifying a continuous map
f ∶X → Y is the same as specifying a point of Y , and specifying a homotopy between two
such maps is the same as specifying a path between the two corresponding points.

Remark 14.1.4. In general, given a homotopy h ∶X × I→ Y from f ∶X → Y to g ∶X → Y ,
whenever we fix a point x ∈X, we obtain a path h(x,−) ∶ I→ Y from f(x) to g(x). We may
informally think of the entire homotopy h as a collection of such paths varying continuously
with the point x ∈X (it is in fact possible to formalize this idea, but we will not do this).

Variant 14.1.5. Let X and Y be topological spaces, let A be a subset of X, and let
f, g ∶X → Y be two continuous maps such that f ∣A = g∣A. A homotopy relative to A from f
to g is a homotopy h ∶X × I→ Y from f to g such that h(x,−) ∶ I→ Y is constant for each
x ∈ A. We say that f is homotopic relative to A to g, and write f ≃A g, if there exists a
homotopy relative to A from f to g.

Remark 14.1.6. When A = ∅, Variant 14.1.5 recovers Definition 14.1.2.

Example 14.1.7. Suppose that X = I and A = {0,1} ⊂ I. Let y0, y1 ∈ Y . A continuous map
f ∶ X → Y such that f(0) = y0 and f(1) = y1 is by definition a path from y0 to y1 in Y . A
homotopy relative to A between two such maps f and g will alternatively be called a path
homotopy from f to g, and in this case, ≃A will alternatively be written ≃p.

We can now state precisely the motivating goal discussed at the start of the lecture:

Goal 14.1.8. Show that:
(1) between some pair of points in R2 ∖ {0}, there exist two paths that are not path

homotopic;
(2) for n ≥ 3, any two paths between any pair of points in Rn ∖ {0} are path homotopic.

Accomplishing this goal will take some time. Let’s continue with getting to know the
basics about the notion of homotopy.
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Example 14.1.9. Suppose that Y = Rn. Then any two maps f, g ∶X → Rn are homotopic:
indeed, we have the “straight line homotopy” h ∶X × I→ Rn from f to g, defined by

h(x, t) ∶= (1 − t) ⋅ f(x) + t ⋅ g(x).

Proposition 14.1.10. Let X and Y be topological spaces, let A be subspace of X, and let
f0 ∶ A→ Y be a continuous map. Then ≃A is an equivalence relation on the set of continuous
maps from f ∶X → Y such that f ∣A = f0.

Proof. Reflexivity: Let f ∶X → Y be any continuous map such that f ∣A = f0. Then we have
a homotopy h ∶X × I→ Y relative to A from f to itself defined by h(x, t) ∶= f(x).

Symmetry: Let f, g ∶X → Y be continuous maps with f ∣A = g∣A = f0, and suppose given a
homotopy h ∶X × I→ Y relative to A from f to g. Then we have a homotopy h′ ∶X × I→ Y
relative to A from g to f defined by h′(x, t) ∶= h(x,1 − t).

Transitivity: Let e, f, g ∶X → Y be continuous maps with e∣A = f ∣A = g∣A = f0, and suppose
given a homotopy h ∶ X × I → Y relative to A from e to f and homotopy h′ ∶ X × I → Y
relative to A from f to g. Then we have a homotopy h′′ ∶X × I→ Y relative to A from e to
g defined as follows:

h′′(x, t) ∶=
⎧⎪⎪⎨⎪⎪⎩

h(x,2t) if 0 ≤ t ≤ 1
2

h′(x,2t − 1) if 1
2 ≤ t ≤ 1

Note that h′′ is well-defined because h(x,1) = f(x) = h′(x,0) for all x ∈ X, and h′′ is
continuous because its restriction to each of the subspaces X × [0, 1

2 ] and X × [ 1
2 , 1] of X × I

is continuous, and these are closed subspaces that cover X × I (see Exercise 12.1.4).

Proposition 14.1.11. Let X, Y , and Z be topological spaces, let A be a subset of X and
B a subset of Y , and let f0, f1 ∶ X → Y and g0, g1 ∶ Y → Z be continuous maps such that
(f0)∣A = (f1)∣A and (g0)∣B = (g1)B. Suppose that f0(A) = f1(A) is contained in B and that
f0 ≃A f1 and g0 ≃B g1. Then g0 ○ f0 ≃A g1 ○ f1.

Proof. Let h ∶X × I→ Y be a homotopy relative to A from f0 to f1 and let h′ ∶ Y × I→ Z
be a homotopy relative to B from g0 to g1. Then we have a homotopy h′′ ∶X × I→ Z relative
to A from g0 ○ f0 to g1 ○ f1 defined by h′′(x, t) ∶= h′(h(x, t), t).

§14.2. Homotopy equivalence

Definition 14.2.1. Let f ∶X → Y be a continuous map of topological spaces. We say that f
is a homotopy equivalence if there exists a continuous map g ∶ Y →X such that g ○ f ≃ idX
and f ○ g ≃ idY .

Remark 14.2.2. Homotopy equivalence is an equivalence relation on topological spaces:
symmetry is clear from the definition; the identity map on any topological space is a homotopy
equivalence, giving reflexivity; and it follows from Proposition 14.1.11 that the composition
of two homotopy equivalences is a homotopy equivalences, giving transitivity.

Example 14.2.3. Any homeomorphism is a homotopy equivalence. (But the converse is
false, as we will see below.)

To give more examples of homotopy equivalences, it will be useful to introduce a couple
more definitions.

Definition 14.2.4. Let X be a topological space and let Y be a subspace of X. Let i ∶ Y →X
be the inclusion function A retraction of X onto Y is a continuous function r ∶X → Y such
that r ○ i = idY (note that r ○ i is simply the restriction r∣Y ). We say that Y is a deformation
retract of X if there exists a retraction r ∶X → Y and a homotopy h ∶X × I→X relative to
Y from idX to i ○ r.
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Proposition 14.2.5. Let X be a topological space and let Y be a subspace of X. Suppose
that Y is a deformation retract of X. Then the inclusion function i ∶ Y →X is a homotopy
equivalence.

Proof. By hypothesis, we may choose a retraction r ∶ X → Y , which by definition means
that r ○ i = idY , and a homotopy h ∶X × I→X from idX to i ○ r. This demonstrates that i is
a homotopy equivalence.

Example 14.2.6. The origin {0} is a deformation retract of Rn: we have the straight line
homotopy h ∶ Rn × I→ Rn defined by h(x, t) ∶= (1 − t)x from idRn to the constant map with
value 0.

Example 14.2.7. Let n ∈ N. For x = (x0, . . . , xn) ∈ Rn+1, let us write ∣x∣ ∶=
√
x2

0 +⋯ + x2
n.

Then Sn ∶= {x ∈ Rn ∶ ∣x∣ = 1} is a deformation retract of Rn+1 ∖ {0}: for example, we have the
homotopy h ∶ Rn+1 ∖ {0} × I→ Rn+1 ∖ {0} given by h(x, t) ∶= ∣x∣−t ⋅ x.

Example 14.2.8. Let E be a figure eight in the plane R2. Choose one point inside each of
the loops, x, y ∈ R2 ∖E. Then E is a deformation retract of R2 ∖ {x, y}.

§14.3. Homotopy invariants

Recall that a property of topological spaces is said to be topologically invariant if it is
invariant under homeomorphism: that is, if, given two homeomorphic topological spaces
X and Y , one satisfies the property if and only if the other one does (Definition 4.3.8).
We discussed two important examples of such properties in the first part of the course:
compactness and connectedness.

We have now introduced another notion of equivalence between topological spaces, and
we can consider the following analogous idea.

Definition 14.3.1. We say that a property of topological spaces is homotopy invariant if,
given topological spaces X and Y that are homotopy equivalent, one of them satisfies the
property if and only if the other one does.

Since homotopy equivalence is a weaker relation than homeomorphism, any homotopy
invariant property is also a topologically invariant property, but not necessarily vice-versa.

Example 14.3.2. Compactness is not a homotopy invariant property. For example, the
one-point space {0} is compact, while Rn is not. But these two topological spaces are
homotopy equivalent by Example 14.2.6 and Proposition 14.2.5.

Example 14.3.3. Connectedness is a homotopy invariant property. Instead of proving this
statement directly, let us formulate and prove something stronger.

In §9.3, we discussed an elaboration on the property of connectedness. For any topological
space X, we defined the set π0(X) of connected components of X. Moreover, for any
continuous map of topological spaces f ∶ X → Y , we defined an associated map of sets
π0(f) ∶ π0(X)→ π0(Y ).

Proposition 14.3.4. Let X and Y be topological spaces and let f, g ∶X → Y be homotopic
continuous maps. Then the two maps π0(f), π0(g) ∶ π0(X)→ π0(Y ) are equal.

Proof. Let h ∶X × I→ Y be a homotopy from f to g. As mentioned in Remark 14.1.4, for
any x ∈X, we have a path h(x,−) ∶ I→X from f(x) to g(x). Since I is connected, the image
of this path is a connected subspace of Y that contains f(x) and g(x), the existence of which
means that f(x) and g(x) lie in the same connected component of Y . The claim follows.

Corollary 14.3.5. Let X and Y be topological spaces and let f ∶ X → Y be a homotopy
equivalence. Then the map π0(f) ∶ π0(X)→ π0(Y ) is a bijection. In particular, X is connected
if and only if Y is connected.
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Proof. Similar to the proof of Corollary 9.3.7, this follows from Proposition 9.3.6, the
definition of homotopy equivalence, and Proposition 14.3.4.

Example 14.3.6. By Example 14.2.7 and Proposition 14.2.5, the inclusion of the discrete
subspace S0 = {1,−1} into R ∖ {0} is a homotopy equivalence. Corollary 14.3.5 thus implies
that this inclusion induces a bijection on sets of connected components, which we can also
directly see is indeed the case.

Thus, we may think of the entire set π0(X) as a homotopy invariant of the topological
space X (and not just a topological invariant, as was discussed at the end of Lecture 9). In
the next lecture, we will define another homotopy invariant of this kind, denoted π1; it is by
studying this invariant that we will eventually reach Goal 14.1.8.
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LECTURE 15. THE FUNDAMENTAL GROUP I (OCT 31)

§15.1. Paths

Throughout this section, we let X be a topological space.

Definition 15.1.1. Let x0, x1 ∈X. Recall (Definition 9.1.1) that a path in X from x0 to x1
is a continuous map α ∶ I→X such that α(0) = x0 and α(1) = x1. In the case that x0 = x1,
we alternatively call this a loop in X based at x0. We let Ω(X,x0, x1) denote the set of paths
in X from x0 to x1; when x0 = x1, we abbreviate this to Ω(X,x0).

Recall next that, for α,β ∈ Ω(X,x0, x1), a path homotopy from α to β is a continuous
map h ∶ I × I→X satisfying the following two properties:
(1) h(s,0) = α(s) and h(s,1) = β(s) for all s ∈ I;
(2) h(0, t) = x0 and h(1, t) = x1 for all t ∈ I;

we say that α and β are path homotopic and write α ≃p β if there exists a path homotopy
from α to β.

By Proposition 14.1.10, ≃p is an equivalence relation on Ω(X,x0, x1). We define

π1(X,x0, x1) ∶= Ω(X,x0, x1)/≃p

to be the set of equivalence classes for this equivalence relation; in the case x0 = x1, we
abbreviate this to π1(X,x0). For α ∈ Ω(X,x0, x1), we write [α] ∈ π1(X,x0, x1) for its
equivalence class.

Definition 15.1.2. Let Y be another topological space and let f ∶X → Y be a continuous
map. Then, for x0, x1 ∈ X and α ∈ Ω(X,x0, x1), we let f∗(α) ∈ Ω(Y, f(x0), f(x1)) denote
the composition f ○ α; this defines a map

f∗ ∶ Ω(X,x0, x1)→ Ω(Y, f(x0), f(x1)).

Given a path homotopy h between α,α′ ∈ Ω(X,x0, x1), the composition f ○h is a path homo-
topy between f∗(α), f∗(α′) ∈ Ω(Y, f(x0), f(x1)) (this is a special case of Proposition 14.1.11),
so we also have a well-defined map

f∗ ∶ π1(X,x0, x1)→ π1(Y, f(x0), f(x1)),

given by f∗([α]) = [f∗(α)].

Proposition 15.1.3. Let x0, x1 ∈X.
(1) The map (idX)∗ ∶ π1(X,x0, x1)→ π1(X,x0, x1) is the identity map on π1(X,x0, x1).
(2) Let f ∶ X → Y and g ∶ Y → Z be continuous maps. Then the two maps (g ○ f)∗ and

g∗ ○ f∗ from π1(X,x0, x1)→ π1(Z, g(f(x0)), g(f(x1))) are equal.

Proof. Immediate from the definitions.

Corollary 15.1.4. Let x0, x1 ∈ X and let f ∶ X → Y be a homeomorphism. Then the map
f∗ ∶ π1(X,x0, x1)→ π1(Y, f(x0), f(x1)) is a bijection.

§15.2. Composition of paths

Definition 15.2.1. Let x0, x1, x2 ∈ X, let α ∈ Ω(X,x0, x1), and let β ∈ Ω(X,x1, x2). We
define α ∗ β ∈ Ω(X,x0, x2) to be the path given by

(α ∗ β)(s) ∶=
⎧⎪⎪⎨⎪⎪⎩

α(2s) if 0 ≤ s ≤ 1
2

β(2s − 1) if 1
2 ≤ s ≤ 1
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(noting that this function is well-defined because α(1) = x1 = β(0) and is continuous because
its restriction to each of the two closed subsets [0, 1

2 ] and [ 1
2 ,1] of I is continuous). This

defines a map
∗ ∶ Ω(X,x0, x1) ×Ω(X,x1, x2)→ Ω(X,x0, x2).

Proposition 15.2.2. Let x0, x1, x2 ∈ X and suppose given α,α′ ∈ Ω(X,x0, x1) and β,β′ ∈
Ω(X,x1, x2) such that α ≃p α

′ and β ≃p β
′. Then α ∗ β ≃p α

′ ∗ β′.

Proof. Let h be a path homotopy from α to α′ and let h be a path homotopy from β to β′.
Then we have a path homotopy h′′ from α ∗ β to α′ ∗ β′ defined as follows:

h′′(s, t) ∶=
⎧⎪⎪⎨⎪⎪⎩

h′(2s, t) if 0 ≤ s ≤ 1
2

h′′(2s − 1, t) if 1
2 ≤ s ≤ 1

Definition 15.2.3. Let x0, x1, x2 ∈ X. It follows from Proposition 15.2.2 that we have a
well-defined map

∗ ∶ π1(X,x0, x1) × π1(X,x1, x2)→ π1(X,x0, x2)
given by [α] ∗ [β] = [α ∗ β].

Proposition 15.2.4. Let f ∶ X → Y be a continuous map, let x0, x1, x2 ∈ X, and let
a ∈ π1(X,x0, x1) and b ∈ π1(X,x1, x2). Then

f∗(a ∗ b) = f∗(a) ∗ f∗(b) ∈ π1(Y, f(x0), f(x2)).

Proof. Clear from the definitions.

Notation 15.2.5. For x0 ∈ X, we let ϵx0 ∈ Ω(X,x0) denote the constant path in X at x0,
defined by ϵx0(s) ∶= x0 for s ∈ I, and we define ex0 ∶= [ϵx0] ∈ π1(X,x0).

Notation 15.2.6. For x0, x1 ∈X and α ∈ Ω(X,x0, x1), we let α ∈ Ω(X,x1, x0) be the reverse
of α, defined by α(s) ∶= α(1 − s) for s ∈ I.

Proposition 15.2.7. (1) For x0, x1 ∈X, a ∈ π1(X,x0, x1), and b ∈ π1(X,x1, x0), we have

ex0 ∗ a = a ∈ π1(X,x0, x1) and b ∗ ex0 = b ∈ π1(X,x1, x0).
(2) For x0, x1, x2, x3 ∈X, a ∈ π1(X,x0, x1), b ∈ π1(X,x1, x2), and c ∈ π1(X,x2, x3), we have

(a ∗ b) ∗ c = a ∗ (b ∗ c) ∈ π1(X,x0, x3).
(3) For x0, x1 ∈X and α ∈ Ω(X,x0, x1), we have

[α] ∗ [α] = ex0 ∈ π1(X,x0) and [α] ∗ [α] = ex1 ∈ π1(X,x1).

To prove this we will use the following observation.

Lemma 15.2.8. Let s0, s1 ∈ I. Then any two paths f, g ∈ Ω(I, s0, s1) are path homotopic.

Proof. Noting that I is a convex subset of R, we have straight line homotopy, i.e. h ∶ I× I→ I
defined by

h(s, t) ∶= (1 − t) ⋅ f(s) + t ⋅ g(s).

Proof of Proposition 15.2.7. (1) We prove the first equality; the second can be proved
similarly. Write a = [α] for α ∈ Ω(X,x0, x1). We have

(ϵx0 ∗ α)(s) =
⎧⎪⎪⎨⎪⎪⎩

x0 = α(0) if 0 ≤ s ≤ 1
2

α(2s − 1) if 1
2 ≤ s ≤ 1.

Thus, letting f ∶ I→ I be the path from 0 to 1 defined by

f(s) ∶=
⎧⎪⎪⎨⎪⎪⎩

0 if 0 ≤ s ≤ 1
2

2s − 1 if 1
2 ≤ s ≤ 1,
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we have
ex0 ∗ a = [α ○ f] = α∗([f]) = α∗([idI]) = [α] = a,

where we use that [f] = [idI] by Lemma 15.2.8.
(2) Write a = [α], b = [β], and c = [γ]. We have

((α ∗ β) ∗ γ)(s) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

α(4s) if 0 ≤ s ≤ 1
4

β(4s − 1) if 1
4 ≤ s ≤

1
2

γ(2s − 1) if 1
2 ≤ s ≤ 1

(α ∗ (β ∗ γ))(s) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

α(2s) if 0 ≤ s ≤ 1
2

β(4s − 2) if 1
2 ≤ s ≤

3
4

γ(4s − 3) if 3
4 ≤ s ≤ 1

Thus, letting g ∶ I→ I be the path from 0 to 1 given by

g(s) ∶=
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2s if 0 ≤ s ≤ 1
4

s + 1
4 if 1

4 ≤ s ≤
1
2

s+1
2 if 1

2 ≤ s ≤ 1.

we have

(a ∗ b) ∗ c = [(α ∗ β) ∗ γ] = [(α ∗ (β ∗ γ)) ○ g] = (α ∗ (β ∗ γ))∗([g])
= (α ∗ (β ∗ γ))∗([idI]) = [α ∗ (β ∗ γ)] = a ∗ (b ∗ c),

where we use that [g] = [idI] by Lemma 15.2.8.
(3) We prove the first equality; the second one can be proved similarly. We have

(α ∗ α)(s) =
⎧⎪⎪⎨⎪⎪⎩

α(2s) if 0 ≤ s ≤ 1
2

α(2(1 − s)) if 1
2 ≤ s ≤ 1.

Thus, letting h ∶ I→ I be the path from 0 to 0 given by

h(s) ∶=
⎧⎪⎪⎨⎪⎪⎩

2s if 0 ≤ s ≤ 1
2

2(1 − s) if 1
2 ≤ s ≤ 1,

we have

[α] ∗ [α] = [α ∗ α] = [α ○ h] = α∗([h]) = α∗([ϵ0]) = [α ○ ϵ0] = [ϵx0] = ex0 ,

where we use that [h] = [ϵ0] by Lemma 15.2.8.

§15.3. The fundamental group

Definition 15.3.1. A group is a triple (G,µ, e) in which G is a set, µ is a function G×G→ G,
and e is an element of G, satisfying the following properties:
(1) Identity: We have µ(e, a) = a and µ(a, e) = a for all a ∈ G.
(2) Associativity: We have µ(µ(a, b), c) = µ(a,µ(b, c)) for all a, b, c ∈ G.
(3) Inverses: For all a ∈ G, there exists b ∈ G such that µ(a, b) = e and µ(b, a) = e.

Remark 15.3.2. As with the other abstract structures we have discussed in this course, we
will be sloppy with our notation when discussing groups: we will identify a group (G,µ, e)
with its underlying set G, leaving the function µ and element e implicit. When we do this,
we may use operational/multiplicative notation like a ⋅ b or a ∗ b or ab in place of µ(a, b); in
some cases, we may even use the additive notation a + b.

The main reason that this definition is relevant to this course is because of the following
example:

Example 15.3.3. Let X be a topological space and let x0 ∈ X. Then it follows from
Proposition 15.2.7 that (π1(X,x0),∗, ex0) is a group. It is called the fundamental group of
(X,x0).
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We end this lecture by articulating the sense in which the fundamental group is a
topological invariant.

Definition 15.3.4. Let G and H be groups and let ϕ ∶ G → H be a map of sets. We say
that ϕ is a group homomorphism if ϕ(a ⋅ b) = ϕ(a) ⋅ ϕ(b) for all a, b ∈ G. We say that ϕ is a
group isomorphism if it is a group homomorphism and a bijection.

Proposition 15.3.5. Let f ∶X → Y be a continuous map (resp. homeomorphism) between
topological spaces and let x0 ∈ X. Then the map f∗ ∶ π1(X,x0) → π1(Y, f(x0)) is a group
homomorphism (resp. group isomorphism).

Proof. This follows from Proposition 15.2.4 and Corollary 15.1.4.

In this sense, the fundamental group (and not just its underlying set) is a topological
invariant. We will see next week that it is even a homotopy invariant, that is that the last
result holds more generally when f is a homotopy equivalence.
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LECTURE 16. THE FUNDAMENTAL GROUP II (NOV 5)

To begin, a small, general remark about groups (relevant to Homework 6):

Remark 16.0.1. Let G be a group and let a ∈ G. Recall that one of the axiomatic properties
of a group guarantees that there exists b ∈ G such that ab = e and ba = e, where e ∈ G is the
identity element. Such an element b is in fact uniquely determined by a: for any b′ ∈ G such
that ab′ = e, we have

b′ = eb′ = (ba)b′ = b(ab′) = be = b.
This unique b is called the inverse of a, and is generally denoted by a−1.

Let’s now get back to paths and the fundamental group.

§16.1. Dependence on basepoints

Throughout this section, we let X be a topological space.

Notation 16.1.1. Let x0, x1 ∈X. For a = [α] ∈ π1(X,x0, x1), we set a−1 ∶= [α] ∈ π1(X,x1, x0),
where α denotes the reverse of α (Notation 15.2.6). It is straightforward to check that a−1 is
well-defined, e.g. by noting that a path homotopy between α and α′ can be reversed to give
a path homotopy between α and α′, or by an argument similar to that in Remark 16.0.1.
Note that, when x0 = x1, this agrees with the notation for inverses in the fundamental group
π1(X,x0).

Construction 16.1.2. Let x0, x
′
0, x1, x

′
1 ∈X, let u ∈ π1(X,x0, x

′
0), and let v ∈ π1(X,x1, x

′
1).

Then we have a map
ϕu,v ∶ π1(X,x0, x1)→ π1(X,x′0, x′1)

defined by ϕu,v(a) ∶= u−1 ∗a∗v (note that this expression is well-defined without parentheses
by the associativity result in Proposition 15.2.7).

Proposition 16.1.3. The map ϕu,v of Construction 16.1.2 is a bijection.

Proof. Reversing u and v, we also have a function ϕu−1,v−1 ∶ π1(X,x′0, x′1)→ π1(X,x0, x1),
defined by ϕu−1,v−1(a′) ∶= u ∗ a′ ∗ v−1. We claim that ϕu−1,v−1 is an inverse to the function
ϕu,v. Indeed, we have

ϕu−1,v−1(ϕu,v(a)) = u ∗ (u−1 ∗ a ∗ v) ∗ v−1 = (u ∗ u−1) ∗ a ∗ (v ∗ v−1) = ex0 ∗ a ∗ ex1 = a,

and we symmetrically have ϕu,v(ϕu−1,v−1(a′)) = a′.

Example 16.1.4. Let x0, x1 ∈X and suppose there exists some path from x0 to x1 inX. Then
we may choose u ∈ π1(X,x0, x1) and we get a bijection ϕex0 ,u

∶ π1(X,x0) → π1(X,x0, x1).
(If there exists no path, then π1(X,x0, x1) is an empty set.)

Notation 16.1.5. In the situation of Construction 16.1.2, suppose that x0 = x1, x′0 = x′1,
and u = v. Then we set

Φu ∶= ϕu,u ∶ π1(X,x0)→ π1(X,x′0).

Proposition 16.1.6. In the situation of Notation 16.1.5, the map Φu ∶ π1(X,x0)→ π1(X,x′0)
is a group isomorphism.

Proof. By Proposition 16.1.3, Φu is a bijection, so we need only prove that it is a group
homomorphism. We prove this using Proposition 15.2.7, as follows:

Φu(a ∗ b) = u−1 ∗ a ∗ b ∗ u = u−1 ∗ a ∗ ex0 ∗ b ∗ u
= u−1 ∗ a ∗ (u ∗ u−1) ∗ b ∗ u = (u−1 ∗ a ∗ u) ∗ (u−1 ∗ b ∗ u) = Φu(a) ∗Φu(b).
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§16.2. Homotopy invariance

Recall from the last lecture that to any continuous map of topological spaces f ∶X → Y and
any x0 ∈ X, we have an induced map f∗ ∶ π1(X,x0) → π1(Y, f(x0)). In Proposition 15.3.5,
we showed that this map is a group homomorphism, and that if f is a homeomorphism, then
it is in fact an isomorphism. In this section, we will show that the latter holds more generally
whenever f is a homotopy equivalence.

Lemma 16.2.1. Let X and Y be topological spaces, let f, g ∶X → Y be continuous maps, let
h ∶X × I→ Y be a homotopy from f to g. Let x0 ∈X, and let u be the path h(x0,−) ∶ I→ Y
from f(x0) to g(x0). Then the two maps

Φu ○ f∗ ∶ π1(X,x0)→ π1(Y, g(x0)), g∗ ∶ π1(X,x0)→ π1(Y, g(x0))

are equal.

Proof. Let a = [α] ∈ π1(X,x0). Let hα ∶ I × I → Y be the continuous map defined by
hα(s, t) ∶= h(α(s), t). Note that we have

hα(s,0) = f(α(s)), hα(s,1) = g(α(s), hα(0, t) = hα(1, t) = u(t)

for all s, t ∈ I. Thus, if we let b0, b1, b2, b3 ∶ I→ I × I be the paths defined by

b0(s) ∶= (0,1 − s), b1(s) ∶= (s,0), b2(s) ∶= (1, s), b3(s) ∶= (s,1)

(these are paths traversing the edges of the square), then we have

Φu(f∗(a)) = (hα)∗([b0] ∗ [b1] ∗ [b2]), g∗(a) = (hα)∗([b3]).

So, to finish the proof, it suffices to see that [b0] ∗ [b1] ∗ [b2] = [b3] in π1(I × I, (0,1), (1,1)).
But it follows from Lemma 15.2.8 that this set has just one element: that is, that any
two paths in I × I from (0,1) to (1,1) are path homotopic (to be clear, this follows from
applying Lemma 15.2.8 to each factor of I × I, or alternatively by noting that the proof of
Lemma 15.2.8 applies also to I×I, as it is a convex subset of R2 and hence admits straight-line
homotopies).

Lemma 16.2.2. Let A and B be sets and let ϕ ∶ A → B and ψ ∶ B → A be maps of sets.
Suppose that ψ ○ ϕ ∶ A→ A and ϕ ○ ψ ∶ B → B are both bijective. Then ϕ and ψ are also both
bijective.

Proof. The fact that ψ ○ ϕ is bijective implies that ψ is surjective and ϕ is injective, and
the fact that ϕ ○ ψ is bijective implies that ϕ is surjective and ψ is injective.

Proposition 16.2.3. Let X and Y be topological spaces, let f ∶ X → Y be a homotopy
equivalence, and let x0 ∈X. Then f∗ ∶ π1(X,x0)→ π1(Y, f(x0)) is a group isomorphism.

Proof. As noted at the start of the section, we know that f∗ is a group homomorphism, so
what remains to be shown is that it is bijective. By definition of homotopy equivalence, we
may choose a continuous map g ∶ Y →X such that g ○ f ≃ idX and f ○ g ≃ idY .

Applying Lemma 16.2.1 to a homotopy from idX to g ○ f , we find that there is a path u
in X from x0 to g(f(x0)) such that

Φu ○ (idX)∗ = (g ○ f)∗ ∶ π1(X,x0)→ π1(X,g(f(x0))).

By Proposition 15.1.3, (idX)∗ is the identity map on π1(X,x0) and (g ○f)∗ = g∗ ○f∗. And by
Proposition 16.1.3, Φu is bijective. The above equality thus implies that g∗ ○ f∗ is bijective,
which implies that g∗ ∶ π1(X,f(x0))→ π1(X,g(f(x0))) is surjective.

Next, applying Lemma 16.2.1 to a homotopy from f ○ g to idY , we find that there is a
path v from f(g(f(x0))) to f(x0) in Y such that

Φv ○ (f ○ g)∗ = (idY )∗ ∶ π1(Y, f(x0))→ π1(Y, f(x0)).
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By similar reasoning as in the the previous paragraph, this implies that g∗ ∶ π1(X,f(x0))→
π1(X,g(f(x0))) must be injective as well.

Finally, we consider again the equality Φu = g∗ ○ f∗ from two paragraphs ago. We know
now that Φu and g∗ are both bijective, and it follows that f∗ ∶ π1(X,x0) → π(X,f(x0)) is
also bijective.

Example 16.2.4. By Example 14.2.6, Rn deformation retracts onto the subspace {0}. Thus,
the inclusion i ∶ {0}→ Rn induces a group isomorphism i∗ ∶ π1({0},0)→ π1(Rn,0).

Example 16.2.5. By Example 14.2.7, Rn+1 ∖ {0} deformation retracts onto the subspace
Sn. Thus, the inclusion i ∶ Sn → Rn+1 ∖ {0} induces a group isomorphism i∗ ∶ π1(Sn, x0) →
π1(Rn+1 ∖ {0}, x0), for any x0 ∈ Sn.

§16.3. Simple connectedness

Definition 16.3.1. We say that a group G is trivial if it has exactly one element, which is
necessarily the identity element e. Note that there is a unique isomorphism between any two
trivial groups. We will sometimes use 0 to denote a trivial group.

Definition 16.3.2. Let X be a topological space. We say that X is simply connected if it is
path connected and the fundamental group π1(X,x0) is trivial for some x0 ∈X (since X is
path connected, it follows then that π1(X,x0) is trivial for all x0 ∈X, by Proposition 16.1.3).

Remark 16.3.3. Let us just note what it means that π1(X,x0) is trivial: it means that
any loop in X based at x0 is path homotopic to a constant loop. Note also that, under the
assumption that X is path connected, π1(X,x0) being trivial implies that π1(X,x0, x1) has
exactly one element for any other x1 ∈X, by Example 16.1.4; this means that any two paths
in X from x0 to x1 are path homotopic.

It follows from the homotopy invariance proved in the previous section that simple
connectedness is a homotopy invariant property:

Proposition 16.3.4. Let X and Y be path connected topological spaces. Then if X and Y
are homotopy equivalent, X is simply connected if and only if Y is simply connected.

Proof. Let f ∶ X → Y be a homotopy equivalence. Choosing any x0 ∈ X, we have by
Proposition 16.2.3 that f∗ ∶ π1(X,x0)→ π1(Y, f(x0)) is a group isomorphism, in particular
a bijection. It follows that π1(X,x0) is trivial if and only if π1(Y, f(x0)) is trivial.

Example 16.3.5. Let X be a topological space with exactly one point, x0 ∈X. Then there
is exactly one loop α ∶ I→X, namely the constant loop ϵx0 , and so π1(X,x0) is trivial, i.e.
X is simply connected.

By Proposition 16.3.4, any topological space that is homotopy equivalent to a topological
space with exactly one point—i.e. that is contractible, as defined in Homework 6—is also
simply connected. For instance, Rn is simply connected (Example 16.2.4).

In the next lecture, we will study simple connectedness of spheres: we will show that Sn
is simply connected for n ≥ 2 but not simply connected for n = 1. In light of our discussion in
these past two lectures, this will constitute an accomplishment of Goal 14.1.8, and indeed
we will also see in the next lecture how to use these facts about spheres to prove that R2 is
not homeomorphic to Rn for n ≥ 3.
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LECTURE 17. FUNDAMENTAL GROUPS OF SPHERES (NOV 7)

§17.1. The case of dimension at least two

Lemma 17.1.1. Let X be a topological space, let U,V ⊆ X be open subsets that cover X,
and let α ∶ I→X be a path in X. Then, for some positive integer n, we may choose points
0 = s0 < s1 < ⋯ < sn < sn+1 = 1 in I such that the following conditions hold:

(1) α(si) ∈ U ∩ V for all 1 ≤ i ≤ n;
(2) α([si, si+1]) ⊆ U or α([si, si+1]) ⊆ V for all 0 ≤ i ≤ n.

Proof. Since U and V are open and cover X, the preimages α−1(U) and α−1(V ) are open
and cover I. It follows that, for each s ∈ (0, 1), we may choose an open interval (a, b) ⊂ I that
contains s and such that α((a, b)) ⊆ U or α((a, b)) ⊆ V , and similarly for the endpoints s = 0
and s = 1, but for intervals of the form [0, b) and (b,1] respectively.

Thus, by compactness of I, we may choose intervals J0 = [0, b0), J1 = (a1, b1), . . . , Jn−1 =
(an−1, bn−1), Jn = (an, 1] contained in I that cover I and such that α carries Ji into U or into
V for each 0 ≤ i ≤ n. Removing some of these intervals if necessary, we may assume that none is
contained in any other, and then we may assume they are ordered so that 0 < a1 < ⋯ < an < 1;
note that we must then have ai < bi−1 for all 1 ≤ i ≤ n, as the intervals cover I. Next, joining
consecutive intervals if necessary, we may assume that, for any 0 ≤ i ≤ n − 1, if α carries Ji
into U (resp. V ), then α carries Ji+1 into V (resp. U). Having arranged this, we may for
each 1 ≤ i ≤ n choose si to be any point in (ai, bi−1), and then the claimed conditions will be
satisfied.

Proposition 17.1.2. Let X be a path connected topological space and let U,V ⊆X be open
subspaces that cover X. Suppose that U and V are simply connected and that U ∩ V is path
connected. Then X is simply connected.

Proof. Choose a basepoint x0 ∈ U ∩ V and let α ∶ I → X be a loop in X based at x0. We
will show that α is path homotopic to a loop in U . Since U is simply connected, this will
imply that α is path homotopic to the constant loop at x0, proving the claim.

By Lemma 17.1.1, α is path homotopic to a composition α0 ∗α1 ∗⋯∗αn where αi ∶ I→X
is a path (not necessariy a loop) such that αi(0) and αi(1) are contained in U ∩V and αi(I)
is contained in U or in V for all 0 ≤ i ≤ n. It suffices now to show for all 0 ≤ i ≤ n that αi
is path homotopic to a path in U . For those i such that αi is already a path in U , there
is nothing to be done, so we need only consider those i such that αi is a path in V . For
such i, since U ∩ V is path connected, there exists some path α′i from αi(0) to αi(1) in
U ∩ V (hence in U), and since V is simply connected, αi is necessarily path homotopic to α′i
(Remark 16.3.3).

Corollary 17.1.3. For n ≥ 2, the sphere Sn is simply connected.

Proof. Observe first that, for any point x ∈ Sn, the complement Sn ∖ {x} deformation
retracts to a single point (for instance to the antipodal point −x ∈ Sn), and hence is simply
connected (Example 16.3.5).

Now choose any two points x, y ∈ Sn, and let U ∶= Sn ∖ {x} and V ∶= Sn ∖ {y}. Then U
and V are simply connected open subspaces covering Sn, and U ∩ V is path connected since
n ≥ 2. The claim thus follows from Proposition 17.1.2.

§17.2. The case of the circle

Notation 17.2.1. Let G be a group, let a ∈ G. We define an ∈ G for n ∈ Z as follows: a0 ∶= e,
and for n > 0, we inductively define an ∶= a(an−1) and a−n ∶= a−1(a−n+1).
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Remark 17.2.2. Let G be a group, let a ∈ G, and let m,n ∈ Z. Then am ⋅ an = am+n (the
proof is a straightforward induction).

Lemma 17.2.3. Let G be a group and let a ∈ G be such that a2 = a. Then a = e.

Proof. We have a = a−1 ⋅ a2 = a−1 ⋅ a = a.

Lemma 17.2.4. Let ϕ ∶ G→H be a group homomorphism. Then:
(1) ϕ preserves identity elements: ϕ(eG) = eH .
(2) ϕ preserves inverses: ϕ(a−1) = ϕ(a)−1 for all a ∈ G.

Proof. (1) We have ϕ(eG)2 = ϕ(e2
G) = ϕ(eG), so the claim follows from Lemma 17.2.3.

(2) We have ϕ(a) ⋅ ϕ(a−1) = ϕ(a ⋅ a−1) = ϕ(eG) = eH , the last equality following from the
previous part.

Remark 17.2.5. Let ϕ ∶ G→H be a group homomorphism and let a ∈ G. It follows from
Lemma 17.2.4 that ϕ(an) = ϕ(a)n for all n ∈ Z.

Notation 17.2.6. Let Z be the set of integers. We regard Z as a group by means of the
addition operation, with identity element 0 ∈ Z.

Proposition 17.2.7. Let G be a group and let a ∈ G. Then there exists a unique group
homomorphism ϕ ∶ Z→ G such that ϕ(1) = a; it is given by ϕ(n) = an.

Proof. It follows from Remark 17.2.5 that a group homomorphism ϕ ∶ Z → G with ϕ(1) = a
must satisfy ϕ(n) = an, and it follows from Remark 17.2.2 that this formula in fact defines a
group homomorphism.

Notation 17.2.8. For the remainder of this section, we let x0 ∶= (1, 0) ∈ S1 and let α ∶ I→ S1

be the loop in S1 based at x0 defined by α(t) ∶= (cos(2πt), sin(2πt)).

Theorem 17.2.9. Let ϕ ∶ Z → π1(S1, x0) be the unique group homomorphism such that
ϕ(1) = [α]. Then ϕ is a group isomorphism.

Remark 17.2.10. Let us unravel the meaning of Theorem 17.2.9. By Proposition 17.2.7,
the homomorphism ϕ is given by ϕ(n) = [α]n. Note that [α]n = [αn] where αn ∶ I → S1 is
the loop defined by αn(t) ∶= (cos(2πnt), sin(2πnt)). Thus, what Theorem 17.2.9 tells us is
the following:
(1) Any loop β ∶ I→ S1 based at x0 is path homotopic to αn for a unique integer n. This

integer is called the winding number of β.
(2) Given two loops β,β′ ∶ I → S1 based at x0, the winding number of the composition

β ∗ β′ is equal to the sum of the winding numbers of β and β′.

The proof of Theorem 17.2.9 will rely on the following lemma, which we will prove
carefully next week.

Notation 17.2.11. Let q ∶ R → S1 be the continuous map given by q(t) ∶= (cos(2πt), sin(2πt)).

Lemma 17.2.12. (1) Let β ∶ I→ S1 be a loop based at x0. Then there exists a unique path
β̃ ∶ I→ R such that β̃(0) = 0 and q ○ β̃ = β.

(2) Let β,β′ ∶ I→ S1 be two loop based at x0, and let h ∶ I × I→ S1 be a path homotopy from
β to β′. Let β̃, β̃′ ∶ I → R be as in the previous part. Then there exists a unique path
homotopy h̃ ∶ I × I→ R from β̃ to β̃′ such that q ○ h̃ = h.

Remark 17.2.13. Note that for t ∈ R, we have q(t) = x0 if and only if t ∈ Z ⊂ R. For
instance, for β and β̃ as in Lemma 17.2.12, we have β̃(1) ∈ Z.

Example 17.2.14. Let αn ∶ I → S1 be as in Remark 17.2.10. Then α̃n ∶ I → R is given by
α̃n(t) = nt. In particular, α̃n(1) = n.
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Proof of Theorem 17.2.9. We are looking to prove that ϕ is bijective. We will do so by
constructing an inverse map ψ ∶ π1(S1, x0)→ Z.

We first define the map ψ. Given a loop β ∶ I→ S1 based at x0, consider the lift β̃ ∶ I→ R

given by Lemma 17.2.12. Since q(β̃(1)) = x0, we must have β̃(1) ∈ Z ⊂ R. We claim that
this integer does not change when we alter β by a path homotopy. Indeed, suppose given
another loop β′ ∶ I → S1 based at x0 and a path homotopy h ∶ I × I → S1 from β to β′. By
Lemma 17.2.12, we have a path homotopy h̃ ∶ I × I → R from β̃ to β̃′. By Remark 17.2.13,
we then have a path h̃(1,−) ∶ I → Z from β̃(1) to β̃′(1); note that since this is a path in
the discrete subspace Z ⊂ R, it must be constant, and so β̃(1) = β̃′(1), as we claimed. The
conclusion is that we have a well-defined function ψ ∶ π1(S1, x0)→ Z given by ψ([β]) = β̃(1).

We now prove that ψ is an inverse to ϕ. Recalling from Remark 17.2.10 that ϕ(n) = [αn],
we have ψ(ϕ(n)) = n by Example 17.2.14. In the other direction, suppose given a loop
β ∶ I → S1 such that ψ([β]) = n, meaning β̃(1) = n. Since R is simply connected, any two
paths from 0 to n in R are path homotopic; in particular, β̃ is path homotopic to α̃n. Hence

[β] = q∗([β̃]) = q∗([α̃n]) = [αn] = ϕ(ψ([β])),

as desired.

Corollary 17.2.15. The circle S1 is not simply connected; in particular, it is not contractible.

§17.3. The first application

Theorem 17.3.1. Let n ≥ 3. Then Rn is not homeomorphic to R2.

Proof. Suppose we had a homeomorphism f ∶ Rn → R2. Then the function g ∶ Rn → R2

given by g(x) ∶= f(x)− f(0) would also be a homeomorphism. Noting that g(0) = 0, it would
follow that the restricted function g ∶ Rn ∖ {0}→ R2 ∖ {0} is a homeomorphism, and hence a
homotopy equivalence. But Rn ∖ {0} is simply connected, by virtue of it being homotopy
equivalent to Sn−1 and Corollary 17.1.3, while R2 ∖ {0} is not simply connected, by virtue of
it being homotopy equivalent to S1 and Theorem 17.2.9.
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LECTURE 18. APPLICATIONS (NOV 12)

§18.1. More on the circle

Notation 18.1.1. In this lecture, for convenience, we will identify R2 with the set of complex
numbers C (in the standard way, i.e. with (x, y) ∈ R2 corresponding to x+yi ∈ C). We regard
C as a topological space via this identification (i.e. so that the bijection in the previous
parenthetical is a homeomorphism).

As usual, for z = x + yi ∈ C, we set ∣z∣ ∶=
√
x2 + y2. We identify S1 with the subspace

{z ∈ C ∶ ∣z∣ = 1} of C. Note that S1 is closed under the multiplication operation on C: that is,
for w, z ∈ S1 ⊂ C, we have wz ∈ S1 ⊂ C; the same goes for multiplicative inverses: for z ∈ S1,
we have z−1 ∈ S1. We may regard S1 as a group in this way, in fact a topological group. On
the other hand, S1 is not closed under addition in C, but it is under negation: for z ∈ S1, we
have −z ∈ S1.

In this notation, our standard basepoint for the circle is 1 ∈ S1 and we have a loop
α ∶ I → S1 based at 1 given by α(t) ∶= e2πit. We will let ϕ ∶ Z → π1(S1,1) denote the
isomorphism of Theorem 17.2.9, sending 1↦ [α].

Lemma 18.1.2. Let X be a topological space, let x0 ∈ X, and let f, g ∶ S1 → X be two
continuous maps such that f(x) = g(x) = x0. Then the following conditions are equivalent:

(1) the two maps f∗, g∗ ∶ π1(S1,1)→ π1(X,x0) are equal;
(2) the two elements f∗([α]), g∗([α]) ∈ π1(X,x0) are equal;
(3) f ≃{1} g.

Proof. Given our isomorphism ϕ ∶ Z → π1(S1,1) sending 1 ↦ [α], the equivalence of the
first two conditions follows from Proposition 17.2.7.

Let us now show that the second and third conditions are equivalent. The second condition
by definition means that f ○α ≃p g○α. Now, recall that α ∶ I→ S1 is a quotient map, identifying
S1 with the quotient space I/{0,1}. It follows that continuous maps S1 →X sending 1↦ x0
are in one-to-one correspondence (via precomposition with α) with loops I → X based at
x0, and similarly homotopies relative to {1} between such maps S1 →X are in one-to-one
correspondence between path homotopies between such loops. Thus, f ○ α ≃p g ○ α if and
only if f ≃{1} g.

Definition 18.1.3. Let f ∶ S1 → S1 be a continuous map. Define f ′ ∶ S1 → S1 by f ′(z) ∶=
f(1)−1f(z); then f ′ is also continuous and satsifies f ′(1) = 1. We then have a composition
of group homomorphisms

Z
ϕÐ→ π1(S1,1)

f ′
∗Ð→ π1(S1,1) ϕ

−1

ÐÐ→ Z;

we define deg(f) ∈ Z to be the image of 1 ∈ Z under this composition, and refer to this as
the degree of f .

Example 18.1.4. Let n ∈ Z and let f ∶ S1 → S1 be the map given by f(z) = zn. Then
deg(f) = n.

Proposition 18.1.5. Let f, g ∶ S1 → S1 be two continuous maps. Then f ≃ g if and only if
deg(f) = deg(g).

Proof. Let f ′, g′ ∶ S1 → S1 be as defined in Definition 18.1.3. Then f ≃ g if and only if
f ′ ≃{1} g′: if h ∶ S1 × I → S1 is a homotopy from f to g, then defining h′ ∶ S1 × I → S1 by
h′(z, t) ∶= h(1, t)−1h(z, t) gives a homotopy relative to {1} from f ′ to g′, and the converse
direction can be done similarly. And it follows from Lemma 18.1.2 and the definition of
degree that f ′ ≃{1} g′ if and only if deg(f) = deg(g).
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§18.2. The disk

Notation 18.2.1. Let D2 ∶= {z ∈ C ∶ ∣z∣ ≤ 1} ⊂ C. Note that S1 is a subspace of D2.

Lemma 18.2.2. Let X be a topological space and let f ∶ S1 →X be a continuous map. Then
the following conditions are equivalent:

(1) f is nullhomotopic, i.e. homotopic to a constant map;
(2) there exists a continuous map g ∶ D2 →X such that g∣S1 = f .

Proof. Let D be the quotient space (S1×I)/(S1×{1}), let q ∶ S1×I →D be the quotient map,
and let j ∶ S1 →D be defined by j(z) ∶= q(z,0). A homotopy from f to a constant map is a
continuous map h ∶ S1 × I→X such that h(z, 0) = f(z) for all z ∈ S1 and h(−, 1) ∶ S1 →X is a
constant function; this is equivalent to a continuous map h ∶D →X such that h(j(z)) = f(z)
for all z ∈ S1. The claim now follows from the fact that there exists a homeomorphism
g ∶D → D2 such that g ○ j is equal to the inclusion i ∶ S1 → D2 (we leave this last assertion as
an exercise).

Theorem 18.2.3. There exists no retraction of D2 onto S1.

Proof. By Corollary 17.2.15, S1 is not contractible, so the identity map idS1 ∶ S1 → S1 is
not nullhomotopic to a constant map (see Homework 6, Problem 1). By Lemma 18.2.2, this
implies that there exists no continuous map r ∶ D2 → S1 such that r∣S1 = idS1 , proving the
claim.

Theorem 18.2.4. [Brouwer fixed point theorem] Let f ∶ D2 → D2 be a continuous map.
Then f has a fixed point.

Proof. Suppose not. Then, for each x ∈ D2, we may consider the unique line in R2 passing
through x and f(x), which has two intersection points with S1; let r(x) be the intersection
point that is closer to x. Then r ∶ D2 → S1 is a retraction of D2 onto S1 (we leave it as an
exercise to check carefully that r is continuous), contradicting Theorem 18.2.3.

Remark 18.2.5. Theorem 18.2.4 is an analogue of Exercise 13.1.4. For the latter, we used
the notion of connectedness (via the intermediate value theorem), while for the former, we
used the notion of simple connectedness.

§18.3. Borsuk–Ulam theorem

The goal of this section will be to prove the following result.

Theorem 18.3.1. [Borsuk–Ulam] Let F ∶ S2 → R2 be a continuous map. Then there exists a
point x ∈ S2 such that F (x) = F (−x).

Remark 18.3.2. Theorem 18.3.1 is often “interpreted” in meterological terms as follows: at
this moment, there exists a pair of antipodal points on the surface of Earth that have equal
temperature and pressure (the idea being that the surface of Earth can be modelled by a
topological space homeomorphic to S2 and that temperature and pressure can be modelled
by continuous, real-valued functions on this space).

Remark 18.3.3. Parallel to Remark 18.2.5, Theorem 18.3.1 is an analogue of Homework 5,
Problem 4.

The proof of Theorem 18.3.1 will use the following result.

Lemma 18.3.4. Let f ∶ S1 → S1 be a continuous map such that f(−z) = −f(z) for all z ∈ S1.
Then deg(f) is odd.

Proof. Let f ′ ∶ S1 → S1 be as in Definition 18.1.3. Note that deg(f) = deg(f ′) and f ′(−z) =
−f ′(z) for all z ∈ S1. Thus, we may replace f by f ′ and thereby reduce to the case that
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f(1) = 1.
Let β ∶= f ○ α ∶ I → S1 and let β̃ ∶ I → R be the unique path such that β̃(0) = 0 and

q ○ β̃ = β, where q ∶ R → S1 is the map given by q(t) ∶= e2πit. Unravelling the definition of
degree, and using the description of ϕ−1 ∶ π1(S1, 1)→ Z given in the proof of Theorem 17.2.9,
we see that deg(f) = β̃(1).

Now define e ∶ I→ R by e(t) ∶= β̃(t+ 1
2)− β̃(t). Our hypothesis that f(−z) = −f(z) for all

z ∈ S1 implies that e(t) must lie in the subspace 1
2 +Z ⊂ R for all t ∈ I. Since e is continuous

and this subspace is discrete, e(t) must be a constant function. Thus

β̃(1) = e(0) + e( 1
2) = 2e(0),

and since e(0) ∈ 1
2 +Z, this implies that β̃(1) is odd.

Proof of Theorem 18.3.1. Suppose that there were no such x ∈ S2. Then we could define
a continuous map F ′ ∶ S2 → S1 by

F ′(x) ∶= F (x) − F (−x)
∣F (x) − F (−x)∣ .

Let i ∶ S1 → S2 be the embedding of the circle as the equator of S2 and let j ∶ D2 → S2 be
the embedding of the disk as the upper hemisphere of S2. Let f ∶= F ′ ○ i ∶ S1 → S1 and let
g ∶= F ′ ○ j ∶ D2 → S1. Then g∣S1 = f , so it follows from Lemma 18.2.2 that f is nullhomotopic,
and then from Proposition 18.1.5 that deg(f) = 0. On the other hand, it follows from the
definition of F ′ that f(−z) = −f(z) for all z ∈ S1, so deg(f) is odd by Lemma 18.3.4, giving
a contradiction.

§18.4. Fundamental theorem of algebra

Theorem 18.4.1. Let f ∶ C → C be a polynomial function of positive degree. Then there
exists z ∈ C such that f(z) = 0.

Proof. Letting n > 0 be the degree of f , we have f(z) = anzn + an−1z
n−1 + ⋯ + a1z + a0,

where ai ∈ C for 0 ≤ i ≤ n and an ≠ 0. Noting that f(z) = 0 if and only if 1
an
f(z) = 0, we may

assume without loss of generality that an = 1.
Suppose that f(z) ≠ 0 for all z ∈ C. We may then define a continuous map g ∶ S1 ×R → S1

by g(r, z) ∶= f(rz)/∣f(rz)∣. For r ∈ R, set gr ∶= g(r,−) ∶ S1 → S1. Then g0 is a constant
function, and hence has degree 0. On the other hand, for any r ∈ R, we can use g to define a
homotopy from gr to g0, and hence gr must also have degree 0 by Proposition 18.1.5. We
will obtain a contradiction by showing that gr also has degree n for r sufficiently large.

For t ∈ I, define ft ∶ C → C by ft(z) ∶= zn + t(an−1z
n−1 +⋯ + a1z + a0). Choose r ∈ R such

that r > 1 and r > ∑n−1
i=0 ∣ai∣. We claim that then ft(rz) ≠ 0 for all z ∈ S1: indeed, if ft(w) = 0,

then we have

wn = −t(an−1w
n−1 +⋯ + a1w + a0) Ô⇒ ∣wn∣ = ∣−t(an−1w

n−1 +⋯ + a1w + a0)∣ ≤
n−1
∑
i=0
∣ai∣∣wi∣,

but for z ∈ S1, we have

∣(rz)n∣ = rn > (∑n−1
i=0 ∣ai∣)rn−1 > ∑n−1

i=0 ∣ai∣ri = ∑n−1
i=0 ∣ai∣∣(rz)i∣

by our choice of r. We may thus define a continuous map h ∶ S1 × I → S1 by h(z, t) ∶=
ft(rz)/∣ft(rz)∣; this is a homotopy from the function, f0 ∶ C → C given by f0(z) = zn, to the
function gr. By Example 18.1.4, f0 has degree n, so gr also has degree n by Proposition 18.1.5.
As we said above, this gives a contradiction.
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LECTURE 19. COVERING SPACES I (NOV 14)

§19.1. Definition and examples

In this section, let p ∶ Y →X be a continuous map of topological spaces.

Definition 19.1.1. Let U be an open subset of X. We say that U is evenly covered by p if
the subset p−1(U) of Y is equal to a disjoint union ∐α∈A Vα where, for each α ∈ A:
(1) Vα is an open subset of Y ;
(2) the restricted map p∣Vα ∶ Vα → U is a homeomorphism.

When this holds, we refer to each open subset Vα as a sheet over U .

Definition 19.1.2. We say that p is a covering map if each x ∈X has a neighborhood U in
X that is evenly covered by p.

Remark 19.1.3. Suppose that p is a covering map. Then:
(1) p is an open map;
(2) for any x ∈X, the topology of the subspace p−1(x) ⊆ Y is discrete.

Definition 19.1.4. Suppose that p is a covering map and let x ∈X. The degree of p at x is
the cardinality ∣p−1(x)∣. Note that this may be finite or infinite.

Example 19.1.5. (1) The map p ∶ R → S1 given by p(t) ∶= e2πit is a covering map of
countably infinite degree, with countably infinite degree at any point z ∈ S1.

(2) Let n be a nonzero integer. Then the map pn ∶ S1 → S1 given by pn(z) ∶= zn is a covering
map, with degree ∣n∣ at any point z ∈ S1.

§19.2. Homotopy lifting and its consequences

Throughout this section, we let p ∶ Y →X be a covering map of topological spaces.

Definition 19.2.1. Let Z be a topological space and let f ∶ Z →X be a continuous map. A
lift of f (along p) is a continuous map f̃ ∶ Z → Y such that p ○ f̃ = p.

Theorem 19.2.2. Let Z be a topological space, let f, g ∶ Z → X be continuous maps, let
h ∶ Z × I→X be a homotopy from f to g, and let f̃ ∶ Z → Y be a lift of f . Then there exists
a unique lift h̃ ∶ Z × I→ Y of h such that h̃(z,0) = f̃(z) for all z ∈ Z.

We will prove Theorem 19.2.2 in the next lecture. Before that, we explain some conse-
quences. First, we highlight a couple of special cases of the the result, which when applied to
the covering map p ∶ R → S1 give Lemma 17.2.12.

Corollary 19.2.3. Let x0, x1 ∈X, and let y0 ∈ p−1(x0).
(1) Let α ∶ I → X be a path from x0 to x1. Then there is a unique lift α̃ ∶ I → Y of α such

that α̃(0) = y0.
(2) Let α,α′ ∶ I → X be two paths from x0 to x1, and let h ∶ I × I → X be a path homotopy

from α to α′. Let α̃, α̃′ be the lifts from (1). Then there is a unique path homotopy
h̃ ∶ I × I→ Y from α̃ to α̃′ that is a lift of h.

Proof. Statement (1) is equivalent to the special case of Theorem 19.2.2 where Z is a
topological space with one point. For statement (2), applying Theorem 19.2.2 in the case
Z = I gives us that there is a unique lift h̃ of h such that h(s,0) = α̃(s) for s ∈ I. To finish
the proof, we just need to verify that h̃ is in fact a path homotopy from α̃ to α̃′, i.e. that
h̃(0,−) ∶ I → Y is equal to the constant function at y0, that h̃(1,−) ∶ I → Y is equal to the
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constant function at y1 ∶= h̃(1,0), and that h̃(−,1) ∶ I → Y is equal to α̃′. Each of these
equalities follows from the uniqueness part of (1), as, in each case, the two functions I→ Y
being compared become equal after composing with p ∶ Y →X and also have the same value
at 0 ∈ I.

We next discuss what this implies for the induced map on fundamental groups.

Corollary 19.2.4. Let x0 ∈X and let y0 ∈ p−1(x0). Then the map p∗ ∶ π1(Y, y0)→ π1(X,x0)
is injective, and its image consists of those classes [α] ∈ π1(X,x0) such that the unique lift
α̃ ∶ I→ Y of α with α̃(0) = y0 (given by Corollary 19.2.3) also has α̃(1) = y0, i.e. is a loop in
Y .

Proof. Consider two elements [β], [β′] ∈ π1(Y, y0). Let α ∶= p ○ β and α′ ∶= p ○ β′, so that
p∗([β]) = [α] and p∗([β′]) = [α′]. Then β is of α that begins at y0, so it must be the unique
such one α̃ from Corollary 19.2.3, and similarly β′ is the unique lift α̃′ of α′ that begins at
y0. Corollary 19.2.3 then tells us that, if α is path homotopic to α′, i.e. [α] = [α′], then β is
path homotopic to β′, i.e. [β] = [β′]. This proves injectivity.

§19.3. Interlude: subgroups and cosets

Definition 19.3.1. Let G be a group and let H be a subset of G. We say that H is a
subgroup of G if the following conditions hold:
(1) the identity element e of G is contained in H;
(2) for h,h′ ∈H, the product element h ⋅ h′ is contained in H;
(3) for h ∈H, the inverse element h−1 is contained in H.

Note that these are exactly the conditions needed so that that group structure on G restricts
to a group structure on H.

Example 19.3.2. For any group G, the subset {e} ⊆ G is a subgroup of G. We refer to this
as the trivial subgroup of G.

Example 19.3.3. Let’s regard the set of integers Z as a group under addition, let n ∈ Z,
and let nZ ⊆ Z be the subset consisting of those integers that are multiples of n. Then nZ is
a subgroup of Z.

Proposition 19.3.4. Let ϕ ∶ G′ → G be a group homomorphism. Then the image im(ϕ) ⊆ G
is a subgroup of G.

Proof. We verify the three conditions of Definition 19.3.1 as follows:
(1) We have e = ϕ(e) ∈ im(ϕ), by Lemma 17.2.4.
(2) Given h,h′ ∈ im(ϕ), we may write h = ϕ(g) and h′ = ϕ(g′) for some g, g′ ∈ G′, and then

h ⋅ h′ = ϕ(g ⋅ g′) ∈ im(ϕ);
(3) Given h ∈ im(ϕ), we may write h = ϕ(g) for some g ∈ G′, and then h−1 = ϕ(g−1) ∈ im(ϕ),

by Lemma 17.2.4.

Example 19.3.5. Again considering Z as a group under addition and fixing n ∈ Z, we have a
unique group homomorphism ϕn ∶ Z→ Z satisfying ϕn(1) = n (Proposition 17.2.7); explicitly,
ϕn is given by multiplication by n, i.e. ϕn(m) = nm for all m ∈ Z. The image im(ϕn) is the
subgroup nZ of Z.

Remark 19.3.6. Let ϕ ∶ G′ → G be a group homomorphism and let H ∶= im(ϕ) ⊆ G. By
Proposition 19.3.4, H is a subgroup of G, and we may thus regard it as a group itself. Note
that we may restrict the codomain of ϕ to obtain a group homomorphism G → H. If the
original homomorphism ϕ is injective, then this homomorphism G → H will be bijective,
hence a group isomorphism.
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Definition 19.3.7. Let G be a group and let H be a subgroup of G. We define an associated
equivalence relation ∼H on G as follows: we have g ∼H g′ if and only if there exists h ∈ H
such that g′ = hg, or equivalently, if and only if g′ ⋅ g−1 ∈ H. (We leave it as an exercise to
check that this is indeed an equivalence relation.) We write:
(1) G/H for the quotient set G/∼H ;
(2) [G ∶H] for the cardinality ∣G/H ∣, which we call the index of H in G (this may be finite

or infinite).

Example 19.3.8. Let n be a nonzero integer and consider the subgroup nZ of Z from
Example 19.3.3. The associated equivalence relation ∼nZ on Z is given as follows: we have
a ∼nZ b if and only if b−a is a multiple of n. Thus, the quotient Z/nZ is the set of congruence
classes of integers modulo n. This has cardinality [Z ∶ nZ] = ∣n∣.

§19.4. Back to covering spaces

We now explain the relevance of §19.3 to the theory of covering spaces:

Theorem 19.4.1. Let X and Y be path connected topological spaces and let p ∶ Y →X be a
covering map. Let x0 ∈X and y0 ∈ p−1(x0), and let p∗ ∶ π1(Y, y0)→ π1(X,x0) be the induced
map on fundamental groups. Then there is a canonical bijection of sets

π1(X,x0)/im(p∗)→ p−1(x0);

in particular, the degree of p at x0 is equal to [π1(X,x0) ∶ im(p∗)].

Proof. Defining such a bijection is equivalent to defining a map of sets

ℓ ∶ π1(X,x0)→ p−1(x0)

such that ℓ is surjective and such that, for a, a′ ∈ π1(X,x0), we have ℓ(a) = ℓ(a′) if and only
if a ∼im(p∗) a

′.
We define the map ℓ as follows. Consider an element [α] ∈ π1(X,x0). Let α̃ ∶ I → Y be

the unique lift of α such that α̃(0) = y0 (Corollary 19.2.3). Since α̃ is a lift of α, we have
p(α̃(1)) = α(1) = x0, i.e. α̃(1) ∈ p−1(x0). We define

ℓ([α]) ∶= α̃(1) ∈ p−1(x0).

For this to be well-defined, we must check that α̃(1) depends only on the path homotopy
class of α. So suppose [α] = [α′], i.e. α and α′ are path homotopic loops in X based at x0.
By Corollary 19.2.3, then α̃ and α̃′ are path homotopic, in particular have the same endpoint,
as desired.

We next show that ℓ is surjective. Let y1 ∈ p−1(x0). Since Y is assumed to be path
connected, we may choose a path β ∶ I → Y from y0 to y1. Then α ∶= p ○ β is a loop in X
based at x0, and we have β = α̃, so ℓ([α]) = β(1) = y1, showing that y1 is in the image of ℓ.

Finally, we must show that, given classes [α], [α′] ∈ π1(X,x0), we have ℓ([α]) = ℓ([α′])
if and only if [α] ∼im(p∗) [α′]. Recall that the latter condition means that there exists
[β] ∈ π1(Y, y0) such that [α′] = p∗([β]) ∗ [α] = [(p ○ β) ∗α]. If this latter condition holds, we
have that

ℓ([α′]) = ℓ([(p ○ β) ∗ α]) = (β ∗ α̃)(1) = α̃(1) = ℓ([α]),
since the unique lift of the composite loop (p ○ β) ∗ α starting at y0 must be the composite
path β ∗ α̃. Conversely, if we have ℓ([α]) = ℓ([α′]), i.e. α̃(1) = α̃′(1), then we may define the
composite β ∶= α̃′ ∗ α̃ (recall that α̃ denotes the reverse of the path α̃); this is a loop in Y
based at y0, and we have

[α̃′] = [β] ∗ [α̃] Ô⇒ [α] = p∗([β]) ∗ [α′].
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Example 19.4.2. Consider the covering map p ∶ R → S1 from Example 19.1.5, and take
x0 ∶= 1 ∈ S1 and y0 ∶= 0 ∈ R. Note first that we have p−1(1) = Z ⊂ R. Next, since R is simply
connected, we have that im(p∗) is the trivial subgroup of π1(X,x0). It follows that the
associated equivalence relation on π1(S1, 1) is the trivial one (i.e. we have a ∼im(p∗) a

′ if and
only if a = a′), and hence the quotient map π1(S1,1)→ π1(S1,1)/im(p∗) is a bijection.

Thus, what Theorem 19.4.1 gives us in this example is a bijection π1(S1, 1)→ Z. In fact,
this is is exactly the bijection discussed in the proof of Theorem 17.2.9.

Example 19.4.3. Let n be a nonzero integer and consider the covering map pn ∶ S1 → S1

from Example 19.1.5, and take x0 ∶= 1 ∈ S1 and y0 ∶= 1 ∈ S1. Under the isomorphism
between π1(S1,1) and Z, the induced map (pn)∗ ∶ π1(S1,1)→ π1(S1,1) corresponds to the
homomorphism ϕn ∶ Z→ Z of Example 19.3.5, i.e. multiplication by n, which has image equal
to nZ ⊆ Z. As guaranteed by Theorem 19.4.1, the degree of pn at 1 is equal to ∣n∣ = [Z ∶ nZ].
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LECTURE 20. COVERING SPACES II (NOV 19)

§20.1. Proof of homotopy lifting

In this section, we will prove Theorem 19.2.2. Let’s first recall the setup. We have topological
spaces X,Y,Z, a covering map p ∶ Y →X and a continuous functions h ∶ Z × I→X. For t ∈ I,
let us set ht ∶= h(−, t) ∶ Z → X (in the theorem statement, we have h0 = f and h1 = g). We
want to show that any lift (along p) of h0 extends uniquely to a lift of h.

For a subspace W ⊆ Z and a subinterval [t0, t1] ⊆ I, let’s say that W × [t0, t1] is good if
any lift of (ht0)∣W extends uniquely to a lift of h∣W×[t0,t1]. The claim then is that Z × I is
good. We first establish a few preliminary ingredients.

Lemma 20.1.1. Let W be a subspace of Z and suppose that there exist real numbers
0 = t0 < t1 < ⋯ < tn−1 < tn = 1 such that W × [ti, ti+1] is good for each 0 ≤ i ≤ n − 1. Then
W × I is good.

Proof. We inductively see that W × [t0, ti+1] is good for 0 ≤ i ≤ n − 1.

Lemma 20.1.2. Let z ∈ Z. Then there exists a neighborhood W of z in Z and real numbers
0 = t0 < t1 < ⋯ < tn = 1 such that, for each 0 ≤ i ≤ n − 1, there exists an open subset U ⊆ X
that is evenly covered by p such that h(W × [ti, ti+1]) ⊆ U .

Proof. As p is a covering map, for each t ∈ I, we may find a neighborhood Ut of h(z, t) in X
that is evenly covered by p. Then h−1(Ut) is a neighborhood of (z, t) in Z × I, and so must
contain Wt × Jt for some neighborhood Wt of z in Z and some interval neighborhood Jt
of t in I. By compactness of {z} × I, we may choose finitely many of these neighborhoods
{Wi × Ji}0≤i≤n covering {z} × I. Then setting W ∶= ⋂0≤i≤nWi, we have that {W × Ji}0≤i≤n
covers {z} × I. Now, removing some of these if necessary, we may assume that none of the
intervals Ji is contained in any other; then we may order them so that their left endpoints
are increasing; and then we may choose points ti ∈ Ji ∩ Ji+1 for 1 ≤ i ≤ n − 1 to satisfy the
claim.

Lemma 20.1.3. Let z ∈ Z, let [t0, t1] ⊆ I be a subinterval, and suppose that there is an open
subset U ⊆X that is evenly covered by p such that h({z}× [t0, t1]) ⊆ U . Then {z}× [t0, t1] is
good.

Proof. Suppose given a lift h̃(z, t0) of h(z, t0). Let V ⊆ p−1(U) be the sheet over U that
contains this lift. Since {z} × [t0, t1] is connected, any lift of h∣{z}×[t0,t1] that starts at
h̃(z, t0) must have image contained in V . It then follows from the fact that p restricts to
a homeomorphism p∣V ∶ V → U that there is a unique such lift, namely the composition of
h∣{z}×[t0,t1] with the inverse homeomorphism (p∣V )−1 ∶ U → V .

Combining the above three lemmas gives us in particular that {z}× I is good for all z ∈ Z.
It follows that, given a lift h̃0 ∶ Z → Y of h0, there is a unique function h̃ ∶ Z × I → Y such
that p ○ h̃ = h and h̃(z,0) = h̃0(z) for z ∈ Z: namely, for each z ∈ Z, the path h̃(z,−) ∶ I→ Y
must be the unique lift of h(z,−) ∶ I→ Y that starts at h̃0(z), which we know exists because
we know that {z} × I is good.

To prove that Z × I is good, we must prove that this function h̃ is continuous. It suffices
to show for any z ∈ Z and t ∈ I that there is a neighborhood A of (z, t) in Z × I such
that h̃∣A is continuous. Fix z ∈ Z and choose a neighborhood W of z in Z, real numbers
0 = t0 < t1 < ⋯ < tn = 1, and an open subset U ⊆ X as in Lemma 20.1.2. We will show
inductively for 0 ≤ i ≤ n− 1 that, for any t ∈ [ti, ti+1], there is such a neighborhood A of (z, t).

First, we may find a neighborhood Wi of z inside W such that the restriction of h̃ti ∶=
h̃(−, ti) ∶ Z → Y to Wi is continuous: in the base case i = 0, this follows from the given
continuity of h̃0 (which means we may take W0 = W ); and for i > 0, it follows from the
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inductive hypothesis. Now let Vi ⊆ p−1(U) be the sheet over U that contains h̃(z, ti). By
continuity of (h̃ti)∣Wi , we may find another neighborhood W ′

i of z inside Wi such that
h̃ti(W ′

i ) ⊆ Vi. As in the proof of Lemma 20.1.3, it follows that h̃(W ′
i × [ti, ti+1]) ⊆ Vi and

then that h̃∣W ′

i×[ti,ti+1] is continuous, as it must be the composition of h∣W ′

i×[ti,ti+1] with
(pVi)−1 ∶ U → Vi. This finishes the proof.

§20.2. Recap

Let’s now continue the thread from last lecture. We begin by highlighting the following
special case of Theorem 19.4.1:

Corollary 20.2.1. Let p ∶ Y → X be a covering map of topological spaces. Assume that X is
path connected and that Y is simply connected. Let x0 ∈X and y0 ∈ p−1(x0). Then there is a
canonical bijection of sets

ℓ ∶ π1(X,x0)→ p−1(x0),
given by ℓ([α]) = α̃(1), where α̃ is the unique lift of the α with starting point y0.

Remark 20.2.2. In the situation of Corollary 20.2.1, the inverse bijection ℓ−1 ∶ p−1(x0)→
π1(X,x0) is given as follows: for y1 ∈ p−1(x0), we may choose a path β from y0 to y1, and
we have ℓ−1(y1) = [p ○ β].

This result gives us a useful tool for learning about fundamental groups, as illustrated by
the following two examples.

Example 20.2.3. We reiterate Example 19.4.2: applying Corollary 20.2.1 to the covering
map p ∶ R → S1 given by p(t) ∶= e2πit, we recover our bijection π1(S1,1)→ Z.

Example 20.2.4. Let k be an integer with k ≥ 2, and let RPk is k-dimensional real projective
space. Recall from Homework 5 that we have a quotient map q ∶ Sk → RPk. The quotient map
implements the relation y ∼ −y for y ∈ Sk, so for any x0 ∈ RPk, we have that ∣q−1(x0)∣ = 2.

In fact, q is a covering map (Homework 8). Noting that Sk is simply connected (since
k ≥ 2), we map apply Corollary 20.2.1 to the covering map q. We find that, for any x0 ∈ RPk,
the fundamental group π1(RPk, x0) is a set with two elements.

In the case k = 2, this implies that the surface RP2 is not homotopy equivalent to the
sphere S2 or to the torus S1 × S1, as the former is simply connected and the latter has an
infinite fundamental group (Homework 7).

It is natural to wonder about the following questions related to Corollary 20.2.1.

Question 20.2.5. Corollary 20.2.1 only gives us a bijection of sets. Is it possible to use the
theory of covering spaces to also describe the group structure of π1(X,x0)?

In the situation of Example 20.2.3, we were able to do so via additional argument specific
to that case; and in the situation of Example 20.2.4, this question is not very interesting
because, up to isomorphism, there is a unique group with two elements. But it would be
good to have a more systematic approach to apply in other situations (as we will see later).

Question 20.2.6. For a given X, does there exist a covering map p ∶ Y → X where Y is
simply connected? If so, to what extent is it unique?

Here is one motivation for asking about uniqueness. Note that Corollary 20.2.1 articulates
a close relationship between such a covering map and the fundamental group π1(X,x0).
Since the latter is something intrinsic to X (up to the choice of basepoint x0), this gives some
evidence that the former may be something intrinsic to X (up to the choice of basepoint x0).

In the remainder of this lecture we will address the uniqueness aspect of Question 20.2.6.
This will in fact naturally lead to an answer also to Question 20.2.5, as we will discuss in the
next lecture. We will return to the matter of existence in the next lecture too.
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§20.3. Map lifting

Definition 20.3.1. Let Z be a topological space. We say that Z is locally path connected if,
for any point z ∈ Z and neighborhood U of z in Z, there exists a path connected neighborhood
V of z in Z such that V ⊆ U .

Example 20.3.2. (1) Euclidean space Rn is locally path connected. More generally, any
locally Euclidean topological space (in particular, any manifold) is locally path connected.

(2) If Z is a locally path connected topological space, then any open subspace of Z and any
quotient space of Z is also locally path connected.

Remark 20.3.3. Note that local path connectedness is different from (global) path connect-
edness. For example, the disjoint union space I ∐ I is locally path connected but not path
connected. There are also examples of spaces that are path connected but not locally path
connected, but let’s not get into that here.

Theorem 20.3.4. Let X,Y,Z be topological spaces, and assume that Z is path connected and
locally path connected. Let p ∶ Y →X be a covering map and let f ∶ Z →X be any continuous
map. Let x0 ∈ X, let y0 ∈ p−1(x0), and let z0 ∈ f−1(x0). Let p∗ ∶ π1(Y, y0) → π1(X,x0) and
f∗ ∶ π1(Z, z0)→ π1(X,x0) be the induced maps on fundamental groups. Then the following
conditions are equivalent:

(1) there exists a lift f̃ ∶ Z → Y of f such that f(z0) = y0;
(2) im(f∗) ⊆ im(p∗).

Moreover, if these conditions are satisfied, then the lift f̃ of (1) is unique.

Proof. Let z ∈ Z. As Z is path connected, we may choose a path γ from z0 to z in Z. Given
a lift f̃ as in (1), the path f̃ ○ γ is a lift of the path f ○ γ, beginning at y0 and ending at f̃(z).
We know (by the path lifting result Corollary 19.2.3) that there is a unique lift f̃ ○ γ of f ○ γ
that begins at y0. So we must have

f̃(z) = f̃ ○ γ(1).

This establishes the uniqueness assertion and shows that (1) is equivalent to the condition
that the above prescription for f̃(z) defines a continuous function f̃ ∶ Z → Y . To finish the
proof, we show the equivalence of this condition with (2).

We first prove that (1) implies (2). Given that f̃ is a continuous lift, we have that
f∗ = p∗ ○ f̃∗, from which it follows immediately that im(f∗) ⊆ im(p∗).

Now we prove that (2) implies (1). So let’s assume that im(f∗) ⊆ im(p∗). We first show
that our definition f̃(z) = f̃ ○ γ(1) is independent of the choice of path γ from z0 to z. Let
γ′ be another path from z0 to z. Let α ∶= f ○ γ′ (where (−) denotes path reversal), and let α̃
be the unique lift of α starting at f̃ ○ γ(1). Then (f̃ ○ γ) ∗ α̃ is the unique lift of

(f ○ γ) ∗ α = (f ○ γ) ∗ (f ○ γ′) = f ○ (γ ∗ γ′)

starting at y0. Since [f ○ (γ ∗ γ′)] = f∗([γ ∗ γ′]) ∈ im(f∗) ⊆ im(p∗), Corollary 19.2.4 implies
that the lift (f̃ ○ γ)∗ α̃ is a loop in Y , which means that α̃(1) = y0. Thus, α̃ is the unique lift
f ○ γ′ of α = f ○ γ′ starting at y0, and hence

f̃ ○ γ′(1) = α̃(1) = α̃(0) = f̃ ○ γ(1),

as desired.
Finally, we show that f̃ is continuous at each point z ∈ Z. Let V be a neighborhood of

f̃(z) in Y . We must find a neighborhood W of z in Z such that f̃(W ) ⊆ V . First, let’s choose
a neighborhood U of f(z) in X that is evenly covered by p, and let V0 ⊆ p−1(Y ) be the sheet
over U that contains f̃(z). Set V ′ ∶= V ∩ V0 and U ′ ∶= p(V ′) ⊆ U ; note that U ′ is open in U
(and hence in X), since the restriction p∣V0 ∶ V0 → U is a homeomorphism. Now, since f is
continuous, f−1(U ′) is a neighborhood of z in Z, and since Z is locally path connected, we
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may choose a path connected neighborhood W of z contained in f−1(U ′), so that f(W ) ⊆ U ′.
We claim that f̃(W ) ⊆ V ′; since V ′ ⊆ V , showing this will complete the proof.

Let w ∈ W . Since W is path connected, we may choose a path δ from z to z′ in W .
Letting γ be any path from z0 to z in Z, we then have that γ ∗ δ is a path from z0 to w in
Z, and hence, using the independence of the choice of path established above,

f̃(w) = ̃f ○ (γ ∗ δ)(1),

where ̃f ○ (γ ∗ δ) is the unique lift of f ○ (γ ∗ δ) starting at y0. Uniqueness implies that
̃f ○ (γ ∗ δ) = (f̃ ○ γ) ∗ (f̃ ○ δ), where f̃ ○ γ) is the unique lift of f ○ γ starting at y0 and f̃ ○ δ

is the unique lift of f ○ δ starting at f̃ ○ γ(1) = f̃(z). Now, δ is a path in W , so f ○ δ is
a path in U ′, so f̃ ○ δ must be the composition of f ○ δ with the inverse homeomorphism
(p∣V0)−1 ∶ U → V0. The latter carries U ′ to V ′, so we find that

f̃(w) = ̃f ○ (γ ∗ δ)(1) = f̃ ○ δ(1) ∈ V ′,

as desired.

§20.4. Universal covering

Throughout this section we let X be a path connected and locally path connected topological
space. We obtain from Theorem 20.3.4 the following consequence for simply connected
coverings of X:

Corollary 20.4.1. Let X be a path connected and locally path connected topological space,
let p ∶ Y →X and p′ ∶ Y ′ →X be covering maps, and assume that Y is simply connected. Let
x0 ∈X, y0 ∈ p−1(x0), and y′0 ∈ (p′)−1(x0). Then:

(1) there is a unique continuous map f ∶ Y → Y ′ such that p′ ○ f = p and f(y0) = y′0;
(2) if Y ′ is also simply connected, then the map f of (1) is a homeomorphism.

Proof. Assertion (1) follows immediately from Theorem 20.3.4 (where we take f there to
be our p here and take p there to be our p′ here), noting that π1(Y, y0) is trivial, and hence
im(p∗) is the trivial subgroup of π1(X,x0).

For assertion (2), let us suppose that Y ′ is simply connected. Then we symmetrically
have a unique map g ∶ Y ′ → Y such that p ○ g = f and g(y′0) = y0. It then follows from
the uniqueness statement in (1) that g ○ f = idY and f ○ g = idY ′ , so that f and g are
homeomorphisms.

Definition 20.4.2. A universal cover of X is a simply connected topological space X̃
equipped with a covering map p ∶ X̃ →X.

Remark 20.4.3. Corollary 20.4.1 implies in particular that any two universal covers of X
are homeomorphic.
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LECTURE 21. COVERING SPACES III (NOV 21)

§21.1. Covering automorphisms

Definition 21.1.1. Let X be a topological space and let p ∶ Y →X and p′ ∶ Y ′ →X be two
cover maps. A covering morphism from Y to Y ′ is a continuous map f ∶ Y → Y ′ such that
p′ ○ f = p. A covering isomorphism from Y to Y ′ is a covering map f ∶ Y → Y ′ that is a
homeomorphism.

Definition 21.1.2. Let p ∶ Y → X be a covering map of topological spaces. A covering
automorphism of Y is a covering isomorphism from Y to itself.

As in Homework 7, we let Homeo(Y ) denote the group of homeomorphisms f ∶ Y →
Y . We now let Aut(Y /X) denote the subgroup of Homeo(Y ) consisting of the covering
automorphisms of Y . (Homeo(Y ) may be thought of as the group of “symmetries” of the
topological space Y . The subgroup Aut(Y /X) consists of those symmeries that are compatible
with the map p ∶ Y →X, in other words symmetries of the covering.)

Theorem 21.1.3. Let X be a path connected and locally path connected topological space,
let p ∶ Y →X be a universal covering of X, let x0 ∈X, and let y0 ∈ p−1(x0). Then:

(1) There is a canonical bijection of sets

ε ∶ Aut(Y /X)→ p−1(x0),

given by ε(f) ∶= f(y0).
(2) The composite bijection

Aut(Y /X) εÐ→ p−1(x0)
ℓ−1

ÐÐ→ π1(X,x0)

is a group isomorphism.

Proof. Statement (1) is equivalent to the statement that, for each y1 ∈ p−1(x0), there
is a unique covering automorphism f ∶ Y → Y such that f(y0) = y1; this follows from
Corollary 20.4.1.

For statement (2), we need to show that the composition ℓ−1 ○ε is a group homomorphism.
Let f, g ∈ Aut(Y /X). Let βf and βg be paths in Y from y0 to f(y0) and g(y0), respectively.
Then g ○ βf is a path from g(y0) to g(f(y0)), and βg○f ∶= βg ∗ (g ○ βf) is a path from y0 to
g(f(y0)). Recalling the formula for ℓ−1 from Remark 20.2.2, we have that

ℓ−1(ε(g ○ f)) = [p ○ βg○f ]
= [(p ○ βg)] ∗ [(p ○ g ○ βf)]
= [(p ○ βg)] ∗ [(p ○ βf)]
= ℓ−1(ε(g)) ∗ ℓ−1(ε(f)),

as desired.

The following result uses notions introduced in Homeworks 7 and 8.

Corollary 21.1.4. Let Y be a topological space that is simply connected and locally path
connected, let G be a group, and let ϕ ∶ G → Homeo(Y ) be a continuous action of G on
Y such that every point y ∈ Y has a neighborhood Y in Y such that U ∩ ϕ(g)(U) = ∅ for
all g ∈ G ∖ {e}. Let X ∶= Y /G and let q ∶ Y → X be the quotient map. Let y0 ∈ Y and
x0 ∶= q(y0) ∈X. Then:

(1) ϕ induces a group isomorphism G
∼Ð→ Aut(Y /X);

(2) there is a canonical group isomorphism G
∼Ð→ π1(X,x0).
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Proof. By Homework 8, Problem 2, q is a covering map. By definition of the quotient
X = Y /G, the image of ϕ is contained in the subgroup Aut(Y /X) ⊆ Homeo(Y ), and hence
we may regard ϕ as a homomorphism G→ Aut(Y /X). We thus have a sequence of maps

G
ϕÐ→ Aut(Y /X) εÐ→ p−1(x0)

ℓ−1

ÐÐ→ π1(X,x0).

To prove (1), we need to check that the first map in this composition is a bijection. Since ε is
a bijection (by Theorem 21.1.3), it suffices to check that the composition ε ○ ϕ is a bijection.
This is the map G→ p−1(x0) that sends g ↦ ϕ(g)(y0); this is surjective by definition of the
quotient X = Y /G, and that it is injective follows from our hypothesis on the action ϕ: for
g, h ∈ G, if ϕ(g)(y0) = ϕ(h)(y0), then we have

ϕ(h−1g)(y0) = ϕ(h−1)(ϕ(g)(y0)) = ϕ(h−1)(ϕ(h)(y0)) = ϕ(h−1h)(y0) = ϕ(e)(y0) = y0,

and the hypothesis implies that this can only happen if h−1g = e, or equivalently g = h.
Statement (2) follows from (1) and the fact (again from Theorem 21.1.3) that the

composition ℓ−1 ○ ε is a group isomorphism .

§21.2. Free groups

Definition 21.2.1. Let G be a group and let S be a subset of G (not assumed to be a
subgroup).
(1) We say that G is generated by S if for any group H and function ϕ0 ∶ S →H, there is

at most one homomorphism ϕ ∶ G→H such that ϕ∣S = ϕ0.
(2) We say that G is freely generated by S, or that G is free on S, if for any group H and

function ϕ0 ∶ S →H, there exists a unique (i.e. exactly one) homomorphism ϕ ∶ G→H
such that ϕ∣S = ϕ0.

Remark 21.2.2. A group G is generated by a subset S ⊂ G if and only if any nonidentity
element g ∈ G ∖ {e} can be written as a product g1⋯gn such that gi ∈ S or g−1

i ∈ S for each
1 ≤ i ≤ n. That this condition implies the condition of Definition 21.2.1(1) is straightforward to
prove, using the definition of group homomorphism and Lemma 17.2.4. We omit justification
of the converse.

Remark 21.2.3. Let ϕ ∶ G → H be a group homomorpshim and let S be a subset of G.
Then:
(1) if G is generated by S and ϕ is surjective, then H is generated by ϕ(S);
(2) if G is free on S and ϕ is an isomorphism, then H is free on ϕ(S).

Example 21.2.4. Let Z be the group of integers under addition. Proposition 17.2.7 says
that Z is freely generated by the one-element subset {1} ⊂ Z; we abbreviate this by saying
that Z is freely generated by the element 1 ∈ Z.

By Remark 21.2.3, Theorem 17.2.9 then implies that π1(S1, 1) is freely generated by the
element [α], where α ∶ I→ S1 is the loop given by α(t) = e2πit.

Example 21.2.5. Let Σ3 denote the set of bijections from the set {1,2,3} to itself, i.e. the
set of permutations of the set {1,2,3}; composition of bijections/permutations defines a
group structure on Σ3. This group has six elements:
(1) the identity permutation e;
(2) the transpositions (12), (23), and (13), with (ij) denoting the permutation that swaps

i and j (and fixes the other element).
(3) the cycles (123) and (132), with (ijk) denoting the permutation that sends i ↦ j,

j ↦ k, and k ↦ i.
Using the condition in Remark 21.2.2, we can check that Σ3 is not generated by any one
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of its elements, while it is generated, for example, by the two-element subset {(12), (123)}.
It is not freely generated by this subset: for instance, any homomorphism ϕ ∶ Σ3 → Z must
send both elements (12) and (123) to 0 ∈ Z, because we have (12)2 = e and (123)3 = e in Σ3.

Example 21.2.6. We again consider Z as a group under addition, and now we consider
the product group Z ×Z (as in Homework 7). By the condition in Remark 21.2.2, Z ×Z
is generated by the two-element subset {(1,0), (0,1)}. It is not freely generated by this
subset: for instance, there is no homomorphism ϕ ∶ Z ×Z → Σ3 such that ϕ(1,0) = (12) and
ϕ(0,1) = (123), because

(1,0) + (0,1) = (1,1) = (0,1) + (1,0),

while
(123)(12) = (13) ≠ (23) = (12)(123).

Theorem 21.2.7. Let S be a set. Then:
(1) There exists a group G and an injective function i ∶ S → G such that G is free on i(S).
(2) Given two pairs (G, i) and (G′, i′) as in (1), there exists a unique group isomorphism

ϕ ∶ G→ G′ such that ϕ ○ i = i′.

Proof. (1) Let X be the set of strings/words x1⋯xn in which each symbol xk is of the form
s or s−1, where s is an element of S; this includes the empty string, which we write as
e. Then take G to be the quotient of X by (the equivalence relation generated by) the
relation that allows one to shorten strings by removing instances of s−1s or ss−1, for any
s ∈ S. We have a function i ∶ S → G sending s to the equivalence class of the string with
the single symbol s, and concatenation of strings induces a group structure on G, such
that G is freely generated by i(S).

(2) By definition of being free on a subset, there exist unique homomorphisms ϕ ∶ G→ G′

and ψ ∶ G′ → G such that ϕ ○ i = i′ and ψ ○ i′ = i, and then the uniqueness guarantees
that ψ ○ ϕ = idG and ψ ○ ϕ = idG′ , so that ϕ and ψ are isomorphisms.

Definition 21.2.8. We refer to a pair (G, i) as in Theorem 21.2.7 as a free group on the set
S. We usually abbreviate notation by omitting the injective function i and regarding S as a
subset of G.

§21.3. Wedge sum of two circles

Let S1 ∨ S1 be the wedge sum of two copies of S1, as in Homework 6, Problem 3; as usual,
we regard each copy of S1 as equipped with the basepoint 1 ∈ S1. Let f, g ∶ S1 → S1 ∨ S1

denote the inclusions of the two copies of S1. Denote the intersection point f(1) = g(1) also
by 1 ∈ S1 ∨ S1. Let f∗, g∗ ∶ π1(S1,1) → π1(S1 ∨ S1,1) be the induced maps on fundamental
groups. Let α ∶ I→ S1 be the standard loop given by α(t) ∶= e2πit. Let

a ∶= f∗([α]) ∈ π1(S1 ∨ S1,1), b ∶= g∗([α]) ∈ π1(S1 ∨ S1,1).

Theorem 21.3.1. The fundamental group π1(S1 ∨ S1,1) is free on the subset {a, b}.

Proof. Let G be a free group on the set {a, b}. We may form a graph Γ where the vertex
set is G and where, for any g ∈ G, there is a unique edge eg,a between g and ga and a unique
edge eg,b betwen g and gb. We may then realize the graph Γ as a topological space Y , by
beginning with the vertex set G as a discrete topological space and then gluing in a copy of
I corresponding to each edge. In the following discussion, we will identify the vertices of Γ
with the corresponding points in Y and the edges of Γ with the corresponding subspaces
(homeomorphic to I) of Y .

We may define a continuous map p ∶ Y → S1 ∨ S1 that sends all vertex points to the
basepoint 1 ∈ S1 ∨ S1 and sends the edges eg,a (resp. eg,b) to the first (resp. second) copy
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of S1, via the quotient map α ∶ I → S1. It is clear that p is a covering map. As it is also
surjective, this implies that it is a quotient map (Homework 9).

We may then identify this covering with one of the form appearing in Corollary 21.1.4.
Namely, note that there is a continuous action ϕ ∶ G→ Homeo(Y ), where ϕ(h) sends a vertex
g to the vertex hg and sends an edge eg,a (resp. eg,b) to the edge ehg,a (resp. ehg,b). Let
q ∶ Y → Y /G be the quotient map. We see that the equivalence relation defining the quotient
Y /G is the same as that implemented by the quotient map p, and hence there is a unique
homeomorphism u ∶ Y /G→ S1 ∨ S1 such that u ○ q = p.

Note finally that, by the description of G appearing in proof of Theorem 21.2.7, the
graph Γ is a tree. It follows that Y is simply connected, even contractible (Homework 9).
We may thus apply Corollary 21.1.4 to obtain an isomorphism G→ π1(S1 ∨ S1). Examining
the definition of this isomorphism, we see that it sends a ↦ a and b ↦ b. This finishes the
proof.

Remark 21.3.2. Theorem 21.3.1 implies in particular that a ∗ b ≠ b ∗ a in π1(S1 ∨ S1,1).

Remark 21.3.3. You may contemplate how Theorem 21.3.1 and Remark 21.3.2 are related
to the calculation of the fundamental group of the torus, π1(S1 × S1, (1, 1)), from Homework
7, Problem 4, via the relationship between S1 ∨ S1 and S1 × S1 from Homework 6, Problem 3.
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LECTURE 22. COVERING SPACES IV (NOV 26)

In the last lecture, we focused our attention on the relationship between a universal covering
of a topological space and its fundamental group. We proved that the fundamental group of
a path connected and locally path connected topological space X can be recovered as the
group of automorphisms/symmetries of a universal covering of X (Theorem 21.1.3). We then
put this into practice in a new example, proving that the fundamental group of the wedge
sum of two circles S1 ∨ S1 is free on two generators (Theorem 21.3.1).

In this lecture, we will wrap up our discussion of covering spaces by formulating a fuller
picture for all coverings of a topological space. We do not have time to prove all of the general
results today, but we will explore how this picture plays out in the illustrative example of
S1 ∨ S1.

§22.1. The classification of coverings

Notation 22.1.1. Let p ∶ Y →X be a covering map of topological spaces, let x0 ∈X, and let
y0 ∈ p−1(x0). We then have an induced map on fundamental groups p∗ ∶ π1(Y, y0)→ π1(X,x0).
For convenience, we will set HY,y0 ∶= im(p∗). Recall that this is a subgroup of π1(X,x0),
and moreover that p∗ is injective (since p is a covering map), so that p∗ induces a group
isomorphism π1(Y, y0) ∼Ð→HY,y0 .

Definition 22.1.2. Let X be a topological space. We say that X is locally simply connected
if, for any point x ∈ X and neighborhood U of x in X, there exists a simply connected
neighborhood V of x in X such that V ⊆ U .

Theorem 22.1.3. Let X be a path connected and locally simply connected topological space.
Let x0 ∈X. Then the following statements hold.

(1) Let p ∶ Y → X and p′ ∶ Y ′ → X be two covering maps, with Y and Y ′ being path
connected. Let y0 ∈ p−1(x0) and y′0 ∈ (p′)−1(x0). Then there is a covering morphism
f ∶ Y → Y ′ such that f(y0) = y′0 if and only if HY,y0 ⊆ HY ′,y′0

. Moreover, if such a
covering morphism f exists, then it is unique, and it is an isomorphism if and only if
HY,y0 =HY ′,y′0

.
(2) For every subgroup H of π1(X,x0), there exists a covering map p ∶ Y →X and a point

y0 ∈ p−1(x0) such that H =HY,y0 .

Remark 22.1.4. Statement (1) is a consequence of Theorem 20.3.4, similar to (and general-
izing) Corollary 20.4.1. For reasons of time, we omit the proof of (2); we make a couple of
comments about it though. First, it is this part where the hypothesis that X is locally simply
connected is relevant. Second, note in particular the case where H is the trivial subgroup: this
case says exactly that X admits a universal covering. In fact, once one constructs a universal
covering, it does not take much more work to find a covering for a general subgroup H; we
will illustrate the mechanism for this below in the case X = S1 ∨ S1 (see Remark 22.2.9).

As the title of this section suggests, Theorem 22.1.3 can be regarded as a full classification
of coverings of the space X, at least when all spaces are equipped with a basepoint. In
particular it implies that, up to (basepoint preserving) isomorphism, they are in bijection
with subgroups of π1(X,x0).

§22.2. Coverings of the wedge sum of two circles

Throughout this section, we let G be a group generated by two elements {a, b} ⊆ G.

Notation 22.2.1. Let F be a free group on the set {a, b}. We identify F with π1(S1 ∨S1, 1),
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by Theorem 21.3.1.
We have a unique group homomorphism ϕ ∶ F → G sending a ↦ a and b ↦ b. The fact

that G is generated by {a, b} means that ϕ is surjective.

Construction 22.2.2. The Cayley graph Γ associated to the group G and generators {a, b}
is the directed graph defined as follows:
(1) the vertex set of Γ is G;
(2) for each g ∈ G, we have an edge eg,a point from the vertex g to the vertex ga and an

edge eg,b pointing from the vertex g to the vertex gb.

Example 22.2.3. (1) Suppose that G is free on {a, b}, or in other words that ϕ ∶ F → G
is an isomorphism. Then the Cayley graph is the tree that appeared in the proof of
Theorem 21.3.1.

(2) Suppose that G = Σ3, with a = (123) and b = (12). The elements of Σ3 can be written in
terms of these generators as follows:

– we have the identity permutation e;
– we have the cycles a = (123) and a2 = (132);
– we have the transposition b = (12), ab = (13), and a2b = (23).

Then the Cayley graph Γ looks as follows, where edges of the form eg,a are colored red
and edges of the form eg,b are colored blue (regarding the directions of the edges of the
outer triangle, note that ba = a2b).

b

a2b ab

e

a2 a

Construction 22.2.4. As we did in the proof of Theorem 21.3.1, from the Cayley graph Γ
we may construct a covering map p ∶ Y → S1 ∨ S1:
(1) the topological space Y is obtained from the graph Γ in the evident manner, by

beginning with the discrete space of vertices G and then appropriately gluing in
intervals corresponding to each of its edges;

(2) the map p sends all vertices to the basepoint 1 ∈ S1 ∨ S1, each edge eg,a (resp. eg,b) to
the circle corresponding to the loop a (resp b) in π1(S1 ∨ S1,1), via the quotient map
I → S1 (in this last specification we have used our choice of direction/orientation for
the edges).

Note that p−1(1) then identifies with the vertex set G. For example, we may choose the
identity vertex e as a basepoint for Y .

This construction gives us a large class of coverings of S1∨S1. The following result describes
how they fit into the classification result Theorem 22.1.3 as well as their symmetries.

Proposition 22.2.5. The covering map p ∶ Y → S1 ∨ S1 of Construction 22.2.4 satisfies the
following:

(1) There is a canonical group isomorphism ψ ∶ G→ Aut(Y /S1 ∨ S1).
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(2) We have HY,e = ϕ−1(e), where ϕ ∶ F = π1(S1 ∨ S1,1)→ G is the group homomorphism
sending a↦ a and b↦ b.

Proof. We define the group homomorphism ψ ∶ G→ Aut(Y /S1 ∨ S1) by taking ψ(h) to be
the covering automorphism of Y that sends a vertex point g to the vertex point hg and sends
the edge eg,a from g to ga to the edge ehg,a from hg to hga, and similarly for the edge eg,b.
(The fact that this is well-defined, i.e. that the specification for edges is compatible with that
for vertices, relies on our choice to multiply by h on the left here, in contrast with our choice
to multiply on the right by a and b in defining the edges.)

To see that ψ is a bijection, we consider the composition

G
ψÐ→ Aut(Y /S1 ∨ S1) εÐ→ p−1(1) = G,

where ε(f) ∶= f(e), i.e. ε records which vertex a covering automorphism f ∈ Aut(Y /S1 ∨ S1)
sends the vertex e to. By definition of ψ, we have ε ○ ψ = idG, implying that ε is surjective.
On the other hand, it follows from Theorem 20.3.4 that ε is injective. We conclude that both
ε and ψ are bijective, proving (1).

For (2), recall from Corollary 19.2.4 that the subgroup HY,e ⊆ F = π1(S1 ∨ S1, 1) consists
of the classes of those loops α such that the unique lift α̃ to Y beginning at e ∈ Y is a loop,
i.e. also ends at e. Contemplating this lifting process in the case at hand, we see that the lift
α̃ ends at the vertex point ϕ([α]), and hence HY,e = ϕ−1(e).

By Proposition 22.2.5, we have a continuous action ψ of G on the Cayley graph space Y .
As in the proof of Theorem 21.3.1, the covering map p ∶ Y → S1 ∨ S1 exactly implements the
quotient of this action, i.e. induces a homeomorphism Y /G → S1 ∨ S1. We may find more
“intermediate” coverings of S1 ∨ S1 by taking the quotient of Y by the action of subgroups of
G:

Construction 22.2.6. Let H be a subgroup of G. We may consider the restriction ψH ∶H →
Aut(Y /S1 ∨ S1) of the continuous action ψ ∶ G→ Aut(Y /S1 ∨ S1) discussed above, and form
the quotient space Y /H. This space can be identified with the space associated to another
(directed) graph, now with vertex set G/H (the same quotient appearing in Definition 19.3.7)
and with edges similar to that in the original Cayley graph Γ, namely, for each equivalence
class, [g] ∈ G/H, an edge e[g],a from the vertex [g] to the vertex [ga] and en edge e[g],b from
the vertex [g] to the vertex [gb]. We have a covering map pH ∶ Y /H → S1 ∨ S1 defined in the
same way as p ∶ Y → S1 ∨ S1, and the quotient map q ∶ Y → Y /H is a covering morphism.

Example 22.2.7. Let us again consider the case G = Σ3 with a = (123) and b = (12),
and now let us choose the subgroup H ∶= {e, b} ⊆ G. Then the quotient Y /H is the space
associated to the following directed graph:

[e] = [b]

[a2] = [ab] [a] = [a2b]

These intermediate quotient coverings fit fit into our classification as follows:

Proposition 22.2.8. For H a subgroup of G, the covering pH ∶ Y /H → S1 ∨ S1 of Construc-
tion 22.2.6 has associated subgroup HY /H,[e] = ϕ−1(H), where ϕ ∶ F = π1(S1 ∨ S1,1) → G is
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the group homomorphism sending a↦ a and b↦ b.

Proof. Follow the same reasoning as in the proof of Proposition 22.2.5(2).

Remark 22.2.9. We may apply Proposition 22.2.8 in the case that G = F—note then that
ϕ = idF and p ∶ Y → S1 ∨ S1 the universal covering from the proof of Theorem 21.3.1—and
we obtain a proof of Theorem 22.1.3(2) in our case X = S1 ∨ S1.

§22.3. Normality

Definition 22.3.1. Let p ∶ Y →X be a covering map of topological spaces, with X and Y
path connected and locally path connected. Let x0 ∈X and let y0 ∈ p−1(x0). We say that the
covering p is normal if the map

ε ∶ Aut(Y /X)→ p−1(x0)

is bijective. It is always injective, by Theorem 20.3.4; so this condition says that p has
“maximal possible symmetry”.

Example 22.3.2. It follows from Proposition 22.2.5 (see its proof) that the Cayley graph
coverings p ∶ Y → S1 ∨ S1 of Construction 22.2.4 are normal.

On the other hand, the intermediate quotient coverings pH ∶ Y /H → S1 ∨ S1 of Construc-
tion 22.2.6 need not be normal. Consider the one in Example 22.2.7. The vertex [e] there
supports a loop edge, while neither of the other two vertices does; it follows that any covering
automorphism f ∶ Y /H → Y /H must satisfy f([e]) = [e]. In other words, the image of the
map

ε ∶ Aut((Y /H)/S1 ∨ S1)→ p−1(1)
consists of the single element [e]. Since ε is an injection, this means that the only covering
automorphism of Y /H is the identity map.

We end this lecture by indicating how this “maximal symmetry” condition for coverings
can in fact be detected in terms of group theory.

Definition 22.3.3. Let G be a group and let H be a subgroup of G. We say that H is a
normal subgroup if, for every h ∈H and g ∈ G, we have g−1hg ∈H, or in other words, there
exists h′ ∈H such that hg = gh′.

Remark 22.3.4. Let G be a group and let H be a normal subgroup of G. In this case, the
quotient G/H (as in Definition 19.3.7) inherits a group structure from G: that is, there is a
well-defined group structure on G/H given by the formula [g1][g2] = [g1g2]. To see that this
is well-defined, suppose we have g1 ∼H g′1 and g2 ∼H g′2, i.e. g′1 = h1g1 and g′2 = h2g2; then

g′1g
′
2 = (h1g1)(h2g2) = h1(g1h2)g2 = h1(h′2g1)g2 = (h1h

′
2)g1g2 Ô⇒ g′1g

′
2 ∼H g1g2;

the third equality here uses the condition that H is normal.

Example 22.3.5. Let ϕ ∶ G′ → G be a group homomorphism. Then ϕ−1(e) is a normal
subgroup of G′, and ϕ induces a group isomorphism G′/ϕ−1(e) ∼Ð→ im(ϕ).

Proposition 22.3.6. Let p ∶ Y →X be a covering map of topological spaces, with X and Y
path connected and locally path connected. Let x0 ∈X and y0 ∈ p−1(x0). Then:

(1) the covering p is normal (in the sense of Definition 22.3.1 if and only if the subgroup
HY,y0 ⊆ π1(X,x0) is normal (if the sense of Definition 22.3.3);

(2) if the condition in (1) holds, the composition

Aut(Y /X) εÐ→ p−1(x0)
ℓ−1

ÐÐ→ π1(X,x0)/HY,y0

is a group isomorphism.
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Proof. Omitted.

Example 22.3.7. Let us see how Proposition 22.3.6 plays out in the situation of Exam-
ple 22.3.2. Consider first a Cayley graph covering p ∶ Y → S1 ∨ S1 as in Construction 22.2.4,
which we saw is normal. And indeed, the description HY,e = ϕ−1(e) of Proposition 22.2.5
shows that HY,e is normal, by Example 22.3.5.

Now let us consider the quotient covering pH ∶ Y /H → S1 ∨ S1 of Example 22.2.7, so
G = Σ3 and H = {e, b}. Observe that H is not a normal subgroup of G: we have

a−1ba = a2ba = a2(a2b) = ab ∉H.

By Proposition 22.2.8, we have HY /H,[e] = ϕ−1(H), and one can check (using the surjectivity
of ϕ ∶ F → G) that the failure of H ⊆ G to be normal implies the failure of ϕ−1(H) ⊆ F to be
normal. This matches the fact we saw above that the covering pH is not normal.
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LECTURE 23. REVIEW (DEC 3)

Over the course of the past few weeks, we have met a number of basic concepts from group
theory, as they each became relevant to our study of the fundamental group and covering
spaces. Today, we will review these concepts all together, together with some of the key
examples that we have discussed.

§23.1. Definition and examples

Definition 23.1.1. A group is a set G equipped with a binary operation G ×G→ G and an
element e ∈ G such that the following conditions hold: e acts as an identity element with
respect to the operation; the operation is associative; and every element of G has an inverse
element with respect to the operation.

Remark 23.1.2. Note that in Definition 23.1.1 we do not assume that the operation is
commutative. A group G is called abelian if its operation is in fact commutative.

Example 23.1.3. Let X be a topological space and let x0 ∈X. Then we have the fundamental
group π1(X,x0).

Example 23.1.4. We have the following groups “of symmetries”:
(1) For X a set, we have a group Bij(X) whose elements are bijections f ∶ X → X,

with operation given by composition and identity element given by the identity map
id ∶X →X. (Warning: this notation is not standard.)

(2) For n ∈ N, we set Σn ∶= Bij({1, . . . , n}). This group has n! elements. For example, we
have

Σ2 = {e, (12)}, Σ3 = {e, (12), (23), (13), (123), (132)}.
The group Σ2 is abelian, but for n ≥ 3, the group Σn is not abelian.

(3) For X a topological space, we have a group Homeo(X) whose elements are homeomor-
phisms f ∶X →X, with operation given by composition and identity element given by
the identity map id ∶X →X.

Example 23.1.5. We have the following groups “from algebra”:
(1) The set of integers Z or the set of real numbers R, with operation given by addition

and identity element given by 0.
(2) The set of nonzero real numbers R ∖ {0}, with operation given by multiplication and

identity element given by 1.
These are abelian.

§23.2. Homomorphisms and isomorphisms

Definition 23.2.1. Let G and G′ be groups.
(1) A group homomorphism ϕ ∶ G→ G′ is a function as indicated satisfying the condition

tht ϕ(g1g2) = ϕ(g1)ϕ(g2) for all g1, g2 ∈ G; this condition implies that ϕ(e) = e and that
ϕ(g−1) = ϕ(g)−1 for all g ∈ G.

(2) A group isomorphism ϕ ∶ G→ G′ is a group homomorphism that is bijective; the inverse
function ϕ−1 ∶ G′ → G is then automatically a group homomorphism as well.

Example 23.2.2. Let f ∶X → Y be a continuous map of topological spaces, let x0 ∈X, and let
y0 ∶= f(x0) ∈ Y . Then there is an induced group homomorphism f∗ ∶ π1(X,x0)→ π1(Y, y0).
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If f is a homotopy equivalence (in particular, if f is a homeomorphism) then f∗ is an
isomorphism.

Example 23.2.3. Let G be a group and let g ∈ G. Then the function ϕ ∶ Z → G defined by
ϕ(n) ∶= gn is a group homomorphism. In fact, it is the unique group homomorphism such
that ϕ(1) = g. This expresses that the group Z is freely generated by the single element 1 ∈ Z.
The homomorphism ϕ is an isomorphism if and only if G is freely generated by the element
g.

Example 23.2.4. There is also a group F that is freely generated by two elements a, b ∈ F ; it
is unique up to isomorphism, in the similar sense to the case of one element in Example 23.2.3.
The elements of F are equivalence classes of finite length words in the alphabet {a, a−1, b, b−1},
with the equivalence relation generated by the relation that allows one to delete instances of
a−1a, aa−1, b−1b, and bb−1. This group is not abelian: for example, we have ab ≠ ba in F .

Example 23.2.5. Let G be a group and let g ∈ G be such that g2 = e. Then the function ϕ ∶
Σ2 → G defined by ϕ(e) ∶= e and ϕ((12)) ∶= g is a group homomorphism. The homomorphism
ϕ is an isomorphism if and only if G has exactly two elements and g ≠ e.

Example 23.2.6. The fundamental group of the circle π1(S1,1) is freely generated by the
single element g ∶= [α], where α ∶ I→ S1 is the loop defined by α(t) ∶= e2πit. In other words,
we have a group isomorphism ϕ ∶ Z→ π1(S1,1) given by ϕ(n) = gn.

Example 23.2.7. The fundamental group of the wedge sum of two circles π1(S1 ∨ S1,1) is
freely generated by the two elements a ∶= i∗(g) and b ∶= j∗(g), where i, j ∶ S1 → S1 ∨ S1 are
the two inclusion maps and g ∈ π1(S1 ∨ S1,1) is as in Example 23.2.6.

§23.3. Subgroups

Definition 23.3.1. Let G be a group. A subgroup of G is a subset H ⊆ G that contains the
identity element e and is closed under the group operation and under inversion; this holds if
and only if H inherits a group structure from G, such that the inclusion function i ∶H → G
is a group homomorphism.

Example 23.3.2. Let ϕ ∶ G→ G′ be a group homomorphism. Then the image im(ϕ) ⊆ G′ is
a subgroup.

Example 23.3.3. For any n ∈ Z, the subset nZ ⊆ Z consisting of those integers that are
multiples of n is a subgroup (with respect to addition).

Example 23.3.4. The subset {±1} ⊆ R ∖ {0} is a subgroup (with respect to multiplication).
It has exactly two elements, so is isomorphic to Σ2.

Example 23.3.5. The following are subgroups of Σ3:

H1 ∶= {e, (12)} ⊆ Σ3, H2 ∶= {e, (12), (123)} ⊆ Σ3.

Example 23.3.6. Let X be a topological space. Then Homeo(X) is a subgroup of Bij(X).

§23.4. Actions and quotients

Definition 23.4.1. Let H be a group and let X be a set. An action of H on X is a group
homomorphism ϕ ∶ H → Bij(X). Such an action determines an equivalence relation ∼ϕ on
X, namely where x ∼ϕ y if and only if y = ϕ(h)(x) for some h ∈ G. We let X/H denote the
quotient set X/∼ϕ.

Variant 23.4.2. Let H be a group and let X be a topological space. A continuous action of
H on X is a group homomorphism ϕ ∶ H → Homeo(X). In this case, we by default regard
the quotient set X/H as equipped with the quotient topology.
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Remark 23.4.3. Intuitively, what an action of a group H on a set or topological space X
does is to realize the elements of H as symmetries of X. The quotient X/H is then obtained
by identifying points of X according to this particular collection of symmetries.

Example 23.4.4. Let rx, ry ∈ Homeo(S1) be given by reflection across the x-axis and
y-axis, respectively. Set r ∶= rx ○ ry; this is given by the formula r(z) = −z. All three of
these homeomorphisms square to the identity, so, by Example 23.2.5, we have actions
ϕx, ϕy, ϕ ∶ Σ2 → Homeo(S1) such that ϕx((12)) = rx, ϕy((12)) = ry, and ϕ((12)) = r. We
may form the quotient space X/Σ2 with respect to any of these actions; what do we get?

Example 23.4.5. Let G be a group and let H ⊆ G be a subgroup. Then we have an action
ϕ ∶ H → Bij(G) given by ϕ(h)(g) ∶= hg. We have an associated quotient set G/H. The
cardinality ∣G/H ∣ is called the index of H in G and denoted [G ∶ H]; when G and H are
both finite, we have [G ∶H] = ∣G∣/∣H ∣.

Example 23.4.6. For n a nonzero integer, nZ is a subgroup of Z of index ∣n∣, and we have
the quotient set Z/nZ of residue classes of integers modulo n.

Example 23.4.7. Let H1,H2 ⊆ Σ3 be as in Example 23.3.5. Then H1 is a subgroup of index
3 and H2 is subgroup of index 2; we have

Σ3/H1 = {[e] = [(12)], [(123)] = [(23)], [(132)] = [(13)]}
Σ3/H2 = {[e] = [(123)] = [(132)], [(12)] = [(13)] = [(23)]}.

Definition 23.4.8. Let G be a group and H ⊆ G a subgroup. We say that H is normal if,
for all h ∈ H and g ∈ G, we have g−1hg ∈ G; this holds if and only if the quotient set G/H
inherits a group structure from G, such that the quotient function q ∶ G→ G/H is a group
homomorphism.

Example 23.4.9. Let G be an abelian group. Then all subgroups H ⊆ G are normal, as
commutativity gives us that g−1hg = g−1gh = h.

We may apply this in the situation of Example 23.4.6, and we deduce that the quotient
set Z/nZ inherits a group structure from Z. This recovers the standard fact that there is a
well-defined operation of adding residue classes of integers modulo n. For instance, we have
the group Z/2Z with exactly two elements, isomorphic to Σ2 and {±1}.

Example 23.4.10. We continue Example 23.4.7. The subgroup H1 ⊆ Σ3 is not normal: note
that (123)e = (123) and (123)(12) = (13), but, while we have [e] = [12] in Σ3/H1, we have
[(123)] ≠ [(13)] in Σ3/H1. This shows Σ3/H1 does not inherit a well-defined group operation
from Σ3.

On the other hand, the subgroup H2 ⊆ Σ3 is normal. The quotient group Σ3/H2 has
exactly two elements, so is isomorphic to Σ2, {±1}, and Z/2Z.

§23.5. Products

Definition 23.5.1. Let G and G′ be groups. Then the the product group G ×G′ is defined
by equipping this product set with the operation given by the formula (g1, g

′
1)(g2, g

′
2) =

(g1g2, g
′
1g
′
2), and with identity element given by (e, e′) (here we denote the identity element

of G′ by e′ for clarity).

Example 23.5.2. We may consider the group Z × Z of pairs of integers. This group is
generated by the elements a ∶= (1,0) and b ∶= (0,1), but it is not freely generated by these
elements. Indeed, note that Z ×Z is abelian; in particular, we have ab = ba in Z ×Z.

Example 23.5.3. Let X and X ′ be topological spaces, let x0 ∈ X and let x′0 ∈ X ′. Then
there is a canonical group isomorphism

π1(X ×X ′, (x0, x
′
0))

∼Ð→ π1(X,x0) × π1(X ′, x′0).
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For instance, combining this with Example 23.2.6, we have a group isomorphism

π1(S1 × S1, (1,1)) ∼Ð→ Z ×Z.

Remark 23.5.4. There is an embedding f ∶ S1 ∨ S1 → S1 × S1 that sends the basepoint
1 ∈ S1 ∨ S1 to the basepoint (1,1) ∈ S1 × S1 and whose induced map on fundamental groups
f∗ ∶ π1(S1 ∨ S1, 1)→ π1(S1 × S1, (1, 1)) can be described as follows. Identifying π1(S1 ∨ S1, 1)
with the free group F on the two generators a, b as in Example 23.2.7, and identifying
π1(S1 × S1,1) with Z × Z as in Example 23.5.3, the induced map f∗ ∶ F → Z × Z is the
unique homomorphism sending a ↦ (1,0) and b ↦ (0,1). As explained in Example 23.5.2,
this homomorphism is not an isomorphism.
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LECTURE 24. REVIEW (DEC 5)

We’ll spend most of today reviewing some of the main elements of the theory of covering
spaces. At the end, we’ll also review a few applications of the fundamental group.

§24.1. Covering spaces

Definition 24.1.1. Let X and Y be topological spaces. A covering map p ∶ Y → X is
a continuous map such that, for each x ∈ X, there is a neighborhood U of x in X such
that p−1(U) is a disjoint union of a collection of open subsets {Vα}α∈A of Y such that the
restricted map p∣Vα ∶ Vα → U is a homeomorphism for each α ∈ A.

A key feature of covering maps is the following “path lifting” property.

Theorem 24.1.2. Let p ∶ Y → X be a covering map and let α ∶ I → X be a path in X. Let
x0 ∶= α(0) ∈X and let y0 ∈ p−1(x0). Then there is a unique lift α̃ ∶ I→ Y such that α̃(0) = y0.

Exercise 24.1.3. Let p ∶ Y → X be a covering map and suppose given x0 ∈ X and
y0 ∈ p−1(x0). Show that, if X is path connected, then p is surjective.

Solution. Let x ∈ X. Assuming that X is path connected, we may choose a path α from
x0 to x. By Theorem 24.1.2, there is a lift α̃ of α. Then α̃(1) is a lift of α(1) = z, proving
surjectivity.

We learned that there is a close connection between coverings of a topological space and
subgroups of its fundamental group, based on the following collection of statements.

Theorem 24.1.4. Let p ∶ Y →X be a covering map, and let x0 ∈X and y0 ∈ p−1(x0). Then:
(1) The induced map p∗ ∶ π1(Y, y0)→ π1(X,x0) is injective.
(2) The image of p∗ is given by the subgroup HY,y0 ∶= {[α] ∈ π1(X,x0) ∶ α̃(1) = y0} (where

α̃ is the unique lift of α with α̃(0) = y0).
(3) Let Z be a path connected and locally path connected topological space, let f ∶ Z →X be

a continuous map, and let z0 ∈ f−1(x0). Then there is a lift f̃ ∶ Z → Y of f such that
f(z0) = y0 if and only if the image of the induced map f∗ ∶ π1(Z, z0) → π1(X,x0) is
contained in HY,y0 , and the lift is unique if it exists.

Remark 24.1.5. In the situation of Theorem 24.1.4(3), when the lift f̃ exists, it can be
described as follows: for z ∈ Z, we may choose a path α in Z from z0 to z, then consider the
path f ○α in X from x0 to f(z), which has a unique lift f̃ ○ α in Y beginning at y0, and the
endpoint of this lift is f̃(z).

Exercise 24.1.6. Let g ∶ S1 → S1 be a continuous map such that g(1) = 1. Let p ∶ R → S1 be
the map sending t↦ e2πit. Show that there is a unique continuous map G ∶ R → R such that
p ○G = g ○ p and such that G(0) = 0, and show that this satisfies G(t + 1) = G(t) + deg(g) for
all t ∈ R.

Solution. Recall that p is a covering map, sending 0↦ 1. Set f ∶= g ○ p ∶ R → S1. Note that
the condition p ○G = g ○ p is the same as G being a lift of f . Since R is contractible, hence
simply connected, the image of both f∗ ∶ π1(R,0)→ π1(S1,1) and p∗ ∶ π1(R,0)→ π1(S1,0)
is the trivial subgroup {e} of π1(S1, 0). It thus follows from Theorem 24.1.4(3) that there is
a unique lift G = f̃ of f such that G(0) = 0, proving the first statement.

For the second statement, note that the fact that p○G = g○p implies that G(t+1)−G(t) ∈ Z
for all t ∈ R. Since the function t↦ G(t + 1) −G(t) is continuous, R is connected, and Z is
discrete, this function must be constant. Therefore, it suffices to show that G(1) −G(0) =
deg(g), and since G(0) = 0 this is equivalent to showing that G(1) = deg(g).
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Let β be the straight line path in R from 0 to 1, i.e. given by β(t) = t. Setting α ∶= p ○ β,
we have that [α] is our canonical generator of π1(S1, 1). By Remark 24.1.5, G(1) is equal to
the endpoint of the lift of g ○p○β = g ○α that starts at 0, which indeed is equal to deg(g).

The feature of R that is important in Exercise 24.1.6 is that it is simply connected, so
that p ∶ R → S1 is an example of the following concept that we studied:

Definition 24.1.7. Let X be a path connected and locally path connected topological space.
A universal covering p ∶ Y →X is a covering map where Y is simply connected.

Theorem 24.1.8. (1) Let X be a path connected and locally path connected topological space
and let p ∶ Y → X be a universal covering. Let x0 ∈ X and y0 ∈ p−1(x0). Then there is
canonical continuous action of π1(X,x0) on Y such that p induces a homeomorphism
Y /π1(X,x0) ∼Ð→X.

(2) Let Y be a simply connected and locally path connected topological space, and suppose
given a continuous action ϕ of a group G on Y such that every point y ∈ Y has a
neighborhood U in Y such that U ∩ϕ(g)(U) = ∅ for all g ∈ G∖{e}. Let X ∶= Y /G and let
p ∶ Y →X be the quotient map. Let x0 ∈X and y0 ∈ p−1(x0). Then there is a canonical
group isomorphism G

∼Ð→ π1(X,x0).

Remark 24.1.9. The statement Theorem 24.1.8(1) is a reformulation of statements we have
seen earlier. Namely, it follows from:
(1) the fact that p is a quotient map (Homework 9);
(2) the isomorphism Aut(Y /X) ∼Ð→ π1(X,x0) (Theorem 21.1.3);
(3) the fact that, for y, y′ ∈ Y , we have p(y) = p(y′) if and only if there exists f ∈ Aut(Y /X)

such that f(y) = y′ (apply Theorem 24.1.4(3), with the basepoint x ∶= p(y) = p(y′)
rather than x0).

Example 24.1.10. Theorem 24.1.8 relates the following:
(1) We have an action of Z on R by translation, i.e. given by the homomorphism ϕ ∶ Z→

Homeo(R) defined by ϕ(n)(t) ∶= t + n.
(2) We have an isomorphism Z

∼Ð→ π1(S1,1).

Example 24.1.11. Let n ≥ 2. Theorem 24.1.8 relates the following:
(1) We have an action of Z/2Z on Sn determined by the homeomorphism r ∶ Sn → Sn

sending x↦ −x.
(2) We have an isomorphism Z/2Z ∼Ð→ π1(RPn, x0) (for any basepoint x0 ∈ RPn).

Example 24.1.12. Let K be the Klein bottle. We have seen how to obtain K as a quotient
of the square I× I. We may equivalently obtain K as a quotient of R2, namely by the relations
(x, y) ∼ (x, y + 1) and (x, y) ∼ (x + 1,−y). This exhibits a (universal) covering p ∶ R2 →K.

Exercise 24.1.13. Let K be the Klein bottle and let x0 ∈K. Given the universal covering
p ∶ R2 →K of Example 24.1.12, we have an isomorphism Aut(R2/K) ∼Ð→ π1(K,x0). Use this
to show that the fundamental group of the Klein bottle is not abelian.

Solution. Given this isomorphism, it suffices to find two elements f, g ∈ Aut(R2/K) that
do not commute. We may take these to be given by f(x, y) ∶= (x, y + 1) and g(x, y) ∶=
(x + 1,−y).

§24.2. Applications

Theorem 24.2.1. R2 is not homeomorphic to R3.

Proof. Because the complement of a point in R2 is not simply connected (as it is homotopy
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equivalent to S1), while the complement of a point in R3 is simply connected (as it is
homotopy equivalent to S2).

Theorem 24.2.2. No pair of the following surfaces is homeomorphic: the sphere S2, the
torus S1 × S1, the real projective plane RP2, and the Klein bottle K.

Proof. Because no pair has isomorphic fundamental groups: S2 is simply connected; S1 × S1

has an infinite, abelian fundamental group (Example 23.5.3); RP2 has finite fundamental
group (Example 24.1.11); and K has nonabelian fundamental group (Exercise 24.1.13).

Theorem 24.2.3. (1) There is no retraction of the disk D2 onto the circle S1 ⊆ D2.
(2) Every continuous map f ∶ D2 → D2 has a fixed point.

Proof. Let’s just review the proof (1); we’ll say it a bit differently this time. Let i ∶ S1 → D2

be the inclusion map. Suppose we had a retraction r ∶ D2 → S1, i.e. such a continuous map
such that r ○ i = idS1 . Then we can consider the induced maps

π1(S1,1) i∗Ð→ π1(D2,1) r∗Ð→ π1(S1,1).

The composition must be the identity map on π1(S1, 1). But D2 is contractible, so the middle
group is trivial, while π1(S1,1) is isomorphic to Z, so this is a contradiction.

Exercise 24.2.4. Let B be the Möbius band, and let B′ ⊆ B be its boundary. Show that
there is no retraction of B onto B′.

Solution. Recall that B is the quotient of I × I by the relation (0, t) ∼ (1, 1 − t). Then B′ is
the image under the quotient map of the subspace {(s, t) ∶ t ∈ {0,1}}. Choose a basepoint
b0 ∈ B′, say the image of (0,0) under the quotient map.

We see that there is a homeomorphism between B′ and S1, giving an isomorphism
betewen π1(B′, b0) and Z. On the other hand, the entirety of B does admit a deformation
retraction onto its central loop B′′, i.e. the image of the subspace {(s, t) ∶ t = 1

2} under the
quotient map. We also see that there is a homeomorphism between B′′ and S1, so we obtain
an isomorphism between π1(B, b0) and Z as well.

Let i ∶ B′ → B be the inclusion of the boundary. Contemplating the above identifications
with S1, we see that the induced map i∗ ∶ π1(B′, b0)→ π1(B, b0) identifies with the multipli-
cation by 2 map Z→ Z. So, if we had a retraction r ∶ B → B′, then r∗ ∶ π1(B′, b0)→ π1(B, b0)
would have to identify with a group homomorphism Z→ Z that sends 2↦ 1, but this doesn’t
exist.
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