Active learning Session 1

We learn about comparing two topologies on a given set and then discuss the interior, the closure and boundary of a subset A of a topological space X.

Problem 1

If \mathcal{T}_1 and \mathcal{T}_2 are topologies on a set X with $\mathcal{T}_1 \subset \mathcal{T}_2$, then we say that \mathcal{T}_1 is *coarser* than \mathcal{T}_2 and that \mathcal{T}_2 is *finer* than \mathcal{T}_1 .

Illustrate these concepts by comparing the trivial and discrete topology on any set X and then by comparing the 4 topologies on $X = \{1, 2\}$.

Problem 2

Recall the definition of a neighborhood of a point. Let A be a subset of a topological space X. Define the *interior* of A (denoted \mathring{A}), and the *closure* of A (denoted \overline{A}) :

 $\overset{\circ}{A} = \{x \in X \mid A \text{ is a neighborhood of } x \in X\},\$ $\overline{A} = \{x \in X \mid X \setminus A \text{ is not a neighborhood of } x \in X\}.$

Prove that $A \subset A \subset \overline{A}$. Note that the *boundary* of A is defined as $\partial A = \overline{A} \setminus A$.

Problem 3

Prove the equalities

$$\mathring{A} = \bigcup_{U \text{ open, } U \subset A} U$$
, and $\overline{A} = \bigcap_{C \text{ closed, } C \supset A} C$.

Problem 4

Use Problem 3 to prove that \mathring{A} is the largest open set contained in A and that \overline{A} is the smallest closed set containing A. Deduce that A is open if and only if $A = \mathring{A}$ if and only if it is a neighborhood of each of its points.¹

Illustrate the concepts from Problem 2 for A = [0, 1) and $X = \mathbb{R}$.

^{1.} The fact that "A is open if and only if it is a neighborhood of each of its points" was mentioned in class.