Active learning Session 6

Problem 1

Let X be a space, let $A \subset X$ be a subspace and use $i: A \to X$ to denote the inclusion map.

- The space X retracts onto the subspace $A \subset X$ if there is a continuous map $r: X \to A$ (called a retraction) such that $r \circ i = id_A$.
- The space X deformation retracts onto the subspace $A \subset X$ if there is a homotopy $f_t: X \to X$ (called a deformation retraction) with $f_0 = \operatorname{id}_X$ and $f_1: X \to A$ a retraction.

Prove that

- 1. If X deformation retracts onto A, then X and A are homotopy equivalent.
- 2. Convex subspace of \mathbb{R}^n deformation retract onto a point (i.e. convex subspaces of \mathbb{R}^n are contractible).
- 3. $D^2 \setminus \{0\}$ deformation retracts onto $\partial D^2 = S^1$

Problem 2

- 1. Prove that if a space X retracts onto a subspace A, then the inclusion $i: A \to X$ induces an injective homomorphism $i_*: \pi_1(A) \to \pi_1(X)$.¹
- 2. Prove that if a space X deformation retracts onto a subspace A, then the inclusion $i: A \to X$ induces an isomorphism $i_*: \pi_1(A) \to \pi_1(X)$ (prove this without using the fact that homotopy equivalences induce isomorphisms on the fundamental group).

Problem 3

Prove that D^2 does not retract onto its boundary $\partial D^2 = S^1$.

Problem 4

Use the third problem to prove Brouwer's fixed point theorem : "Every continuous map $f: D^2 \to D^2$ admits a fixed point."

Mini-Lecture

If time permits we discuss the fact that for a tree T in a connected graph G, the projection $G \to G/T$ is a homotopy equivalence.

^{1.} In this problem we're implicitly assuming that the basepoint x_0 lies in $A \subset X$.