Spring 2023

MIT

Active learning Session 7

Problem 1

Let $\{X_{\alpha}\}_{\alpha \in A}$ be a family of path-connected spaces and let $x_{\alpha} \in X_{\alpha}$ for each $\alpha \in A$. Assume that each x_{α} is a deformation retract of an open neighbhorhood $U_{\alpha} \subset X_{\alpha}$. Use van Kampen's theorem to prove that

$$\pi_1\left(\bigvee_{\alpha\in A} X_\alpha\right) = \underset{\alpha\in A}{\ast} \pi_1(X_\alpha).$$

Here $\bigvee_{\alpha \in A} X_{\alpha}$ is the quotient of the disjoint union $\bigsqcup_{\alpha \in A} X_{\alpha}$ in which all the x_{α} are identified to a point. Hint : generalise what we did in class for $S^1 \vee S^1$. Bigger hint : look at Example 1.21 of Hatcher's textbook.

Problem 2

Read the following statement and give examples : "If X is a connected graph with maximal tree T, then $\pi_1(X)$ is free on the number of edges of $X \setminus T$." Here recall that a *tree* is a contractible graph, and that a tree in a graph X is *maximal* if it contains all the vertices of X

Mini-Lecture

Depending on time, we'll describe one or two proofs of the assertion in the second problem.

Problem 3

In van Kampen's theorem, prove that the condition on $A_{\alpha} \cap A_{\beta}$ being pathconnected is necessary; also prove that the condition on A_{α} and A_{β} being open is necessary. In both cases, consider the circle as a union of intervals.¹

Problem 4

Calculate the fundamental group of the space obtained from the torus $T^2 =$ $S^1 \times S^1$ by attaching a 2-cell to one of the S^1 -factors. What if we attach a 2-cell to each S^1 -factor?

^{1.} The condition on the triple intersections being path-connected is necessary. The curious reader might consult p.44 of Hatcher's textbook on algebraic topology.