Problem Set 1 Topological spaces and continuous maps

Solve the following problems, unless the instructions ask you to only solve a subset of them. E.g. in Problem 1, you are to solve two subproblems whereas in Problem 7, you are to solve all the subproblems.

Problem 1

Let X, Y be sets, let $f: X \to Y$ be a map, let $A \subset X$ be a subset, let $\{A_i\}_{i \in I}$ be a family of subsets of X, let $B \subset Y$ be a subset and let $\{B_i\}_{i \in I}$ be a family of subsets of Y.

Read each of the following properties of images and inverse images and **prove** \underline{two} of them.

- 1. One has the inclusion $A \subset f^{-1}(f(A))$ with equality if f is injective. Similarly, one has the inclusion $f(f^{-1}(B)) \subset B$ with equality if f is surjective.
- 2. Here are how images interact with unions and intersections : one has the equality $f(\bigcup_{i \in I} A_i) = \bigcup_{i \in I} f(A_i)$ as well as $f(\bigcap_{i \in I} A_i) \subset \bigcap_{i \in I} f(A_i)$ with equality if f is injective.
- 3. For inverse images, unions and intersections, there are the following equalities $f^{-1}(\bigcup_{i \in I} B_i) = \bigcup_{i \in I} f^{-1}(B_i)$ and $f^{-1}(\bigcap_{i \in I} B_i) = \bigcap_{i \in I} f^{-1}(B_i)$.
- 4. Here is how images and inverse images interact with complements : one has the equality $f^{-1}(B_i \setminus B_j) = f^{-1}(B_i) \setminus f^{-1}(B_j)$ as well as the inclusion $f(A_i) \setminus f(A_j) \subset f(A_i \setminus A_j)$, with equality if f is injective.
- 5. Here is how inverse images interact with composition of maps : if $g: Y \to Z$ is a map and $C \subset Z$ is a subset, then $(g \circ f)^{-1}(C) = f^{-1}(g^{-1}(C))$.

Problem 2

Solve <u>one</u> of the two following problems :

- 1. Prove that in the definition of a topology, the condition "if $U_1, U_2 \in \mathcal{T}$, then $U_1 \cap U_2 \in \mathcal{T}$ " is equivalent to the condition "if $U_1, \ldots, U_n \in \mathcal{T}$, then $U_1 \cap \ldots \cap U_n \in \mathcal{T}$ ".
- 2. Let \mathcal{T} be a family of subsets of X, whose elements we call open sets. Additionally, we call a subset $C \subset X$ closed if $X \setminus C$ is open. Prove that \mathcal{T} is a topology if and only if the three following conditions hold :
 - (a) the empty set \emptyset and X are closed;

- (b) if $\{C_i\}_{i \in I}$ is a collection of closed sets, then the intersection $\bigcap_{i \in I} C_i$ is also a closed set;
- (c) if C_1 and C_2 are closed, then their union $C_1 \cup C_2$ is also closed.

Problem 3

1. For a set X, prove that the family of subsets

 $\mathcal{T}_f = \{ U \subset X \mid X \setminus U \text{ is finite} \} \cup \{ \emptyset \}$

defines a topology. This topology is called the *cofinite topology*.

2. If (X, \mathcal{T}) is a topological space and $A \subset X$ is a subset, prove that

 $\mathcal{T}_A = \{ U \subset A \mid \text{ there exists an open set } V \subset X \text{ with } U = A \cap V \}$

defines a topology on A, called the induced topology.

Problem 4

Let X, Y be topological spaces, and let $f: X \to Y$ be a map. Solve <u>one</u> of the two following problems :

- 1. Prove that f is continuous if and only if $f^{-1}(C) \subset X$ is closed for every closed set $C \subset Y$.
- 2. Assume that f is bijective. Prove that f^{-1} is continuous if and only if $f(U) \subset Y$ is open for every open set $U \subset X$.¹

Problem 5

Let X, Y, Z be topological spaces, and let $f: X \to Y$ be a continuous map. Prove <u>one</u> of the following statements :

- 1. If $A \subset X$ is a subspace, then the inclusion $j: A \to X$ is continuous.
- 2. The restriction $f|_A \colon A \to Y$ is continuous.
- 3. If $B \subset Y$ is a subspace with $im(f) \subset B$, then the map $g: X \to B$ obtained from f by restricting the target is continuous.
- 4. If $Y \subset Z$ is a subspace, then the function $h: X \to Z$ obtained from f by extending the target is continuous.

Problem 6

1. Let $S^1 \subset \mathbb{R}^2$ denote the unit circle, and let $S \subset \mathbb{R}^2$ be the square with vertices (-1, -1), (1, -1), (1, 1), (-1, 1). Prove that S^1 and S are homeomorphic.

^{1.} We say that a map $f: X \to Y$ is open if the image of every open set is open.

2. Given $a, b, c, d \in \mathbb{R} \cup \{-\infty, \infty\}$, prove that if a < b and c < d, then the intervals (a, b) and (c, d) are homeomorphic.

Problem 7

The definition of a group was mentioned in p-set 0.

- 1. Prove that the set $\mathbb Z$ of integers is a group under addition.
- 2. Fix a set X. Prove that the set of all bijections $f: X \to X$ is a group under composition. When $X = \{1, 2, ..., n\}$, this group is denoted S_n and is called the *symmetric group*.
- 3. Prove that the set of all homeomorphisms of a topological space X forms a group under composition.