Problem Set 8: The fundamental group and homotopy equivalences

Solve problem 2 and $\underline{\mathbf{four}}$ of the other five problems.

Problem 1

A topological space is called *contractible* if it is homotopy equivalent to a point. Prove that a topological space X is contractible if and only if id_X is homotopic to a constant map.

Problem 2

In this exercise, it is not expected you write down explicit homeomorphisms and homotopy equivalences.

1. Classify the following letters up to homeomorphism and homotopy equivalence :

A,B,C,D,E,F,G,H,I,J.

2. Let X, Y be topological spaces, let $x_0 \in X$ and let $y_0 \in Y$. Define the wedge (or one point union) of X and Y as $X \vee Y = X \sqcup Y / \sim$ where $x_0 \sim y_0$. Explain why the punctured genus g surface is homotopy equivalent to the wedge of 2g circles, i.e. given an open ball $B \subset \Sigma_g$, illustrate why $\Sigma_g \setminus B$ is homotopy equivalent to $\bigvee_{i=1}^{2g} S^1$.

Problem 3

In this exercise, it is expected you write down explicit formulas for homotopies and homotopy equivalences.

- 1. Prove that the cylinder $Cyl = S^1 \times [0,1]$ is homotopy equivalent to a circle.
- 2. By viewing the Möbius band \mathcal{M} as a quotient of $[0, 1] \times [0, 1]$, prove that \mathcal{M} is homotopy equivalent to a circle.

Calculate $\pi_1(Cyl)$ and $\pi_1(\mathcal{M})$.

Problem 4

Recall the following notation for the unit *n*-sphere and the unit (n+1)-disc :

$$S^{n} = \{ (x_{1}, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid x_{1}^{2} + \dots + x_{n+1}^{2} = 1 \}, \\ D^{n+1} = \{ (x_{1}, \dots, x_{n+1}) \in \mathbb{R}^{n+1} \mid x_{1}^{2} + \dots + x_{n+1}^{2} \le 1 \}.$$

Write $\iota: S^n \to D^{n+1}$ for the inclusion map. Prove that a continuous map $f: S^n \to X$ is homotopic to a constant map if and only if there exists a continuous map $\tilde{f}: D^{n+1} \to X$ such that $\tilde{f} \circ \iota = f$.

Problem 5

Given a subset $R \subset G$, consider

$$\langle \langle R \rangle \rangle = \bigcap_{N \triangleleft G, R \subset N} N.$$

1. Prove that $\langle \langle R \rangle \rangle$ is the smallest normal subgroup of G containing R.

2. Prove that $\langle \langle R \rangle \rangle = \{g_1 r_1^{\varepsilon_1} g_1^{-1} \cdots g_n r_n^{\varepsilon_n} g_n^{-1} \mid r_i \in R, \ \varepsilon_i = \pm 1, \ g_i \in G\}.$ We say that G is normally generated by R if $G = \langle \langle R \rangle \rangle.$

Problem 6

Let X be a set, let F be a group and let $j: X \to F$ be a map. Assume that (F, j) satisfies the following *universal property*: for every group G and every map $f: X \to G$, there exists a unique homomorphism $\tilde{f}: F \to G$ such that $\tilde{f} \circ j = f$.¹ Prove that F is isomorphic to the free group F(X).

^{1.} During class, we proved that $(F(X), \iota: X \to F(X))$ satisfies this universal property.