Problem Set 9: Group presentations

Problem 1

Let $\{G_{\alpha}\}_{\alpha \in A}$ be a family of groups.

- 1. Let F be a group and let $\{\iota_{\alpha} : G_{\alpha} \to F\}_{\alpha \in A}$ be a family of homomorphisms. Assume that $(F, \{\iota_{\alpha}\}_{\alpha \in A})$ satisfies the following *universal property* : for every group G and for every family $\{\varphi_{\alpha} : G_{\alpha} \to G\}_{\alpha \in A}$ of homomorphisms, there exists a unique homomorphism $\varphi : F \to G$ such that $\varphi \circ \iota_{\alpha} = \varphi_{\alpha}$ for every α .¹ Prove that $F \cong *_{\alpha}G_{\alpha}$.
- 2. Assume that each group G_{α} is presented by $\langle X_{\alpha} | R_{\alpha} \rangle$. Prove that $*_{\alpha}G_{\alpha} \cong \langle \sqcup_{\alpha}X_{\alpha} | \sqcup_{\alpha}R_{\alpha} \rangle$ by proving that $\langle \sqcup_{\alpha\in A}X_{\alpha} | \sqcup_{\alpha\in A}R_{\alpha} \rangle$ satisfies the universal property of 1.
- 3. Deduce that $F(X) \cong *_{\alpha \in X} \mathbb{Z}$.

Problem 2

- 1. Prove that $S_3 \cong \langle x, y \mid x^2, y^2, (xy)^3 \rangle$.
- 2. Identify the following group $\langle x, y \mid x^4 = y^3, x^3 = y^4 \rangle$.
- 3. Prove that $\langle a, b \mid a^2 = b^2 \rangle$ and $\langle c, d \mid cdcd^{-1} \rangle$ are two presentations for the same group.

Problem 3

Use van Kampen's theorem to calculate the fundamental group of the Klein bottle ${\mathcal K}$ in two different ways :

- 1. by viewing \mathscr{K} as the union of two Möbius bands along their boundary,
- 2. by writing \mathscr{K} as the union of a disc D^2 with $\mathscr{K} \setminus \operatorname{Int}(D^2)$.

^{1.} During class, we proved that $(*_{\alpha \in A}G_{\alpha}, \{j_{\alpha} : G_{\alpha} \to *_{\alpha}G_{\alpha}\}_{\alpha \in A})$ satisfies this universal property.